Mitigating Deep Reinforcement Learning Backdoors in the Neural Activation Space
- URL: http://arxiv.org/abs/2407.15168v1
- Date: Sun, 21 Jul 2024 13:48:23 GMT
- Title: Mitigating Deep Reinforcement Learning Backdoors in the Neural Activation Space
- Authors: Sanyam Vyas, Chris Hicks, Vasilios Mavroudis,
- Abstract summary: This paper investigates the threat of backdoors in Deep Reinforcement Learning (DRL) agent policies.
It proposes a novel method for their detection at runtime.
- Score: 0.24578723416255752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the threat of backdoors in Deep Reinforcement Learning (DRL) agent policies and proposes a novel method for their detection at runtime. Our study focuses on elusive in-distribution backdoor triggers. Such triggers are designed to induce a deviation in the behaviour of a backdoored agent while blending into the expected data distribution to evade detection. Through experiments conducted in the Atari Breakout environment, we demonstrate the limitations of current sanitisation methods when faced with such triggers and investigate why they present a challenging defence problem. We then evaluate the hypothesis that backdoor triggers might be easier to detect in the neural activation space of the DRL agent's policy network. Our statistical analysis shows that indeed the activation patterns in the agent's policy network are distinct in the presence of a trigger, regardless of how well the trigger is concealed in the environment. Based on this, we propose a new defence approach that uses a classifier trained on clean environment samples and detects abnormal activations. Our results show that even lightweight classifiers can effectively prevent malicious actions with considerable accuracy, indicating the potential of this research direction even against sophisticated adversaries.
Related papers
- Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks.
Most research on backdoor attacks has focused on image classification, with limited investigation into object detection.
We propose novel twin trigger generative networks to generate invisible triggers for implanting backdoors into models during training, and visible triggers for steady activation during inference.
arXiv Detail & Related papers (2024-11-23T03:46:45Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
Graph Neural Networks (GNNs) have shown remarkable performance in various tasks.
Backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers.
arXiv Detail & Related papers (2024-05-17T13:09:39Z) - DisDet: Exploring Detectability of Backdoor Attack on Diffusion Models [23.502100653704446]
Some pioneering works have shown the vulnerability of the diffusion model against backdoor attacks.
In this paper, for the first time, we explore the detectability of the poisoned noise input for the backdoored diffusion models.
We propose a low-cost trigger detection mechanism that can effectively identify the poisoned input noise.
We then take a further step to study the same problem from the attack side, proposing a backdoor attack strategy that can learn the unnoticeable trigger.
arXiv Detail & Related papers (2024-02-05T05:46:31Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks.
We propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks.
We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks.
arXiv Detail & Related papers (2023-12-23T05:51:40Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly
Detection [16.010654200489913]
This paper proposes a new defense against neural network backdooring attacks.
It is based on the intuition that the feature extraction layers of a backdoored network embed new features to detect the presence of a trigger.
To detect backdoors, the proposed defense uses two synergistic anomaly detectors trained on clean validation data.
arXiv Detail & Related papers (2020-11-04T20:33:51Z) - Backdoor Smoothing: Demystifying Backdoor Attacks on Deep Neural
Networks [25.23881974235643]
We show that backdoor attacks induce a smoother decision function around the triggered samples -- a phenomenon which we refer to as textitbackdoor smoothing.
Our experiments show that smoothness increases when the trigger is added to the input samples, and that this phenomenon is more pronounced for more successful attacks.
arXiv Detail & Related papers (2020-06-11T18:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.