論文の概要: Assessing Sample Quality via the Latent Space of Generative Models
- arxiv url: http://arxiv.org/abs/2407.15171v1
- Date: Sun, 21 Jul 2024 14:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 18:59:03.854690
- Title: Assessing Sample Quality via the Latent Space of Generative Models
- Title(参考訳): 生成モデルの潜在空間によるサンプル品質の評価
- Authors: Jingyi Xu, Hieu Le, Dimitris Samaras,
- Abstract要約: そこで本研究では,学習した生成モデルの潜伏空間について検討し,生成したサンプルの品質を推定する。
これは、生成されたサンプルの品質が、それに似たトレーニングデータの量に直接関連しているため、実現可能である。
提案手法は, VAE, GAN, 潜伏拡散モデルなど, 様々な生成モデルのサンプル品質と高い相関関係を示す。
- 参考スコア(独自算出の注目度): 44.59115390303591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in generative models increase the need for sample quality assessment. To do so, previous methods rely on a pre-trained feature extractor to embed the generated samples and real samples into a common space for comparison. However, different feature extractors might lead to inconsistent assessment outcomes. Moreover, these methods are not applicable for domains where a robust, universal feature extractor does not yet exist, such as medical images or 3D assets. In this paper, we propose to directly examine the latent space of the trained generative model to infer generated sample quality. This is feasible because the quality a generated sample directly relates to the amount of training data resembling it, and we can infer this information by examining the density of the latent space. Accordingly, we use a latent density score function to quantify sample quality. We show that the proposed score correlates highly with the sample quality for various generative models including VAEs, GANs and Latent Diffusion Models. Compared with previous quality assessment methods, our method has the following advantages: 1) pre-generation quality estimation with reduced computational cost, 2) generalizability to various domains and modalities, and 3) applicability to latent-based image editing and generation methods. Extensive experiments demonstrate that our proposed methods can benefit downstream tasks such as few-shot image classification and latent face image editing. Code is available at https://github.com/cvlab-stonybrook/LS-sample-quality.
- Abstract(参考訳): 生成モデルの進歩は、サンプルの品質評価の必要性を高めます。
そのため、事前訓練された特徴抽出器を使用して、生成されたサンプルと実際のサンプルを比較のために共通の空間に埋め込む。
しかし、異なる特徴抽出器は矛盾した評価結果をもたらす可能性がある。
さらに,これらの手法は,医用画像や3Dアセットなど,堅牢で普遍的な特徴抽出器が存在しない領域では適用できない。
本稿では,学習した生成モデルの潜伏空間を直接検討し,生成したサンプルの品質を推定する。
これは、生成したサンプルの品質が、それに似たトレーニングデータの量に直接関連しており、潜伏空間の密度を調べることで、この情報を推測できるためである。
したがって, 潜時密度スコア関数を用いて, 試料品質の定量化を行う。
提案手法は, VAE, GAN, 潜伏拡散モデルなど, 様々な生成モデルのサンプル品質と高い相関関係を示す。
従来の品質評価手法と比較して,本手法には次のような利点がある。
1)計算コストの削減による前世代品質評価
2【各種領域・モダリティの一般化】
3)潜伏型画像編集・生成法の適用性。
広汎な実験により,提案手法は,少数ショット画像分類や潜在顔画像編集などの下流作業に有効であることが示された。
コードはhttps://github.com/cvlab-stonybrook/LS-sample-qualityで入手できる。
関連論文リスト
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
トレーニングフリーテスト時動的アダプタ(TDA)は、この問題に対処するための有望なアプローチである。
単体テスト時間適応法(Dota)の簡易かつ効果的な方法を提案する。
Dotaは継続的にテストサンプルの分布を推定し、モデルがデプロイメント環境に継続的に適応できるようにします。
論文 参考訳(メタデータ) (2024-09-28T15:03:28Z) - Self-Guided Generation of Minority Samples Using Diffusion Models [57.319845580050924]
データ多様体の低密度領域に居住する少数サンプルを生成するための新しい手法を提案する。
我々のフレームワークは拡散モデルに基づいて構築されており、ガイドドサンプリングの原理を生かしている。
実データセットのベンチマーク実験により、我々のアプローチは現実的な低自由度マイノリティインスタンスを作成する能力を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2024-07-16T10:03:29Z) - Continual Test-time Domain Adaptation via Dynamic Sample Selection [38.82346845855512]
本稿では,連続テスト時間領域適応(CTDA)のための動的サンプル選択法を提案する。
誤情報を誤用するリスクを低減するため,高品質と低品質の両方のサンプルに共同正負の学習を適用した。
私たちのアプローチは3Dポイントのクラウドドメインでも評価されており、その汎用性とより広範な適用可能性を示している。
論文 参考訳(メタデータ) (2023-10-05T06:35:21Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Forgetting Data from Pre-trained GANs [28.326418377665345]
特定の種類のサンプルを忘れないように、トレーニング後にモデルを後編集する方法について検討する。
我々は,GANに対して,忘れるべきサンプルの表現方法が異なる3つの異なるアルゴリズムを提供する。
我々のアルゴリズムは、完全再トレーニングのコストのごく一部で、高品質を維持しながらデータを忘れることができる。
論文 参考訳(メタデータ) (2022-06-29T03:46:16Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Self-Diagnosing GAN: Diagnosing Underrepresented Samples in Generative
Adversarial Networks [5.754152248672317]
本研究では,GAN (Generative Adversarial Networks) のトレーニング中に未表現のサンプルを診断し強調する手法を提案する。
本研究では, 下表の試料が平均差が高いか, ばらつきが高いかの観察から, それらの試料を強調する方法を提案する。
実験により,提案手法は各種データセット上でのGAN性能の向上を実証した。
論文 参考訳(メタデータ) (2021-02-24T02:31:50Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Instance Selection for GANs [25.196177369030146]
GAN(Generative Adversarial Networks)は、高品質な合成画像を生成するために広く採用されている。
GANはしばしばデータ多様体の外にある非現実的なサンプルを生成する。
本稿では,サンプルの品質向上のための新しいアプローチを提案する。モデルトレーニングが行われる前に,インスタンス選択によるトレーニングデータセットの変更を行う。
論文 参考訳(メタデータ) (2020-07-30T06:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。