論文の概要: ${\it Asparagus}$: A Toolkit for Autonomous, User-Guided Construction of Machine-Learned Potential Energy Surfaces
- arxiv url: http://arxiv.org/abs/2407.15175v1
- Date: Sun, 21 Jul 2024 14:22:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 18:59:03.846126
- Title: ${\it Asparagus}$: A Toolkit for Autonomous, User-Guided Construction of Machine-Learned Potential Energy Surfaces
- Title(参考訳): ${\it Asparagus}$: 機械学習型ポテンシャルエネルギー表面の自律的ユーザガイド構築のためのツールキット
- Authors: Kai Töpfer, Luis Itza Vazquez-Salazar, Markus Meuwly,
- Abstract要約: $it Asparagus$は、ML-PESモデルの自律的ユーザガイド構築を可能にする、複数のパーツを一貫した実装に包含するソフトウェアパッケージである。
コードの機能については、有機金属化合物における反応性ポテンシャルの表現や周期的な表面構造への原子拡散など、様々な例で説明されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the establishment of machine learning (ML) techniques in the scientific community, the construction of ML potential energy surfaces (ML-PES) has become a standard process in physics and chemistry. So far, improvements in the construction of ML-PES models have been conducted independently, creating an initial hurdle for new users to overcome and complicating the reproducibility of results. Aiming to reduce the bar for the extensive use of ML-PES, we introduce ${\it Asparagus}$, a software package encompassing the different parts into one coherent implementation that allows an autonomous, user-guided construction of ML-PES models. ${\it Asparagus}$ combines capabilities of initial data sampling with interfaces to ${\it ab initio}$ calculation programs, ML model training, as well as model evaluation and its application within other codes such as ASE or CHARMM. The functionalities of the code are illustrated in different examples, including the dynamics of small molecules, the representation of reactive potentials in organometallic compounds, and atom diffusion on periodic surface structures. The modular framework of ${\it Asparagus}$ is designed to allow simple implementations of further ML-related methods and models to provide constant user-friendly access to state-of-the-art ML techniques.
- Abstract(参考訳): 科学コミュニティにおける機械学習(ML)技術の確立により、MLポテンシャルエネルギー面(ML-PES)の構築は物理学や化学の標準的プロセスとなっている。
これまでのところ、ML-PESモデルの構築は独立して行われており、新しいユーザーが結果の再現性を克服し、複雑化する最初のハードルとなっている。
ML-PESを広範囲に使用するためのバーを減らすため,我々は,ML-PESモデルの自律的かつユーザガイドによる構築を可能にする,さまざまな部分を一貫した実装に包含するソフトウェアパッケージである${\it Asparagus}$を紹介した。
${\it Asparagus}$は、初期データサンプリングの機能をインターフェースと組み合わせて、${\it ab initio}$計算プログラム、MLモデルのトレーニング、モデルの評価と、ASEやCHARMMといった他のコードへの適用などを行います。
コードの機能については、小さな分子のダイナミクス、有機金属化合物の反応性ポテンシャルの表現、周期的な表面構造への原子拡散など、様々な例で説明されている。
The modular framework of ${\it Asparagus}$ is designed to allow simple implementation of further ML-related method and model to provide constant user- friendly access to the-of-the-the-art ML techniques。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
現在のMLLM(Multi-Modal Large Language Models)は、一般的な視覚的推論タスクにおいて強力な機能を示している。
我々は,MLLMに基づく物理知覚とシミュレーションによるマルチモーダル科学推論(MAPS)という新しいフレームワークを開発した。
MAPSは、専門家レベルのマルチモーダル推論タスクを物理的知覚モデル(PPM)を介して物理図理解に分解し、シミュレータを介して物理的知識で推論する。
論文 参考訳(メタデータ) (2025-01-18T13:54:00Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
画像の理解と生成の両方が可能なシンプルだが強力なエンコーダのないMLLMであるSynerGen-VLを提案する。
トークンの折り畳み機構と,高分解能画像理解を効果的に支援するビジョンエキスパートベースのプログレッシブアライメント事前学習戦略を導入する。
コードとモデルはリリースされます。
論文 参考訳(メタデータ) (2024-12-12T18:59:26Z) - Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
LLMを多数の機能モジュールに分解する傾向が高まり、複雑なタスクに取り組むためにモジュールの一部とモジュールの動的アセンブリを推論することができる。
各機能モジュールを表すブロックという用語を造語し、モジュール化された構造をカスタマイズ可能な基礎モデルとして定義する。
検索とルーティング,マージ,更新,成長という,レンガ指向の4つの操作を提示する。
FFN層はニューロンの機能的特殊化と機能的ニューロン分割を伴うモジュラーパターンに従うことが判明した。
論文 参考訳(メタデータ) (2024-09-04T17:01:02Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - MLatom 3: Platform for machine learning-enhanced computational chemistry
simulations and workflows [12.337972297411003]
機械学習(ML)は、計算化学における一般的なツールになりつつある。
MLatom 3は、MLのパワーを活用して典型的な計算化学シミュレーションを強化するプログラムパッケージである。
ユーザーは、事前訓練されたMLモデルと量子力学的近似を含む幅広いメソッドのライブラリから選択できる。
論文 参考訳(メタデータ) (2023-10-31T03:41:39Z) - SimbaML: Connecting Mechanistic Models and Machine Learning with
Augmented Data [0.0]
SimbaMLは、通常の微分方程式に基づくモデルからリアルな合成データセットを生成するオープンソースツールである。
SimbaMLは、合成データから実世界のデータへの変換学習を便利に調査することができる。
論文 参考訳(メタデータ) (2023-04-08T12:50:50Z) - Multi-Agent Automated Machine Learning [54.14038920246645]
自動機械学習(AutoML)におけるモジュールの共同最適化のためのマルチエージェント自動機械学習(MA2ML)を提案する。
MA2MLはモジュール間の協力を強化するために各エージェントにクレジットを明示的に割り当て、検索効率を向上させるために政治外の学習を取り入れている。
実験により、MA2MLは計算コストの制約の下でImageNet上で最先端のトップ1の精度が得られることが示された。
論文 参考訳(メタデータ) (2022-10-17T13:32:59Z) - Cross-Layer Approximation For Printed Machine Learning Circuits [4.865819809855699]
印刷エレクトロニクス(PE)における機械学習(ML)アーキテクチャに適した層間近似を提案し,実装する。
その結果, クロス近似は, 最先端の精密設計と比較して, 平均面積47%, 消費電力44%, 精度1%以下で最適設計を提供することを示した。
論文 参考訳(メタデータ) (2022-03-11T13:41:15Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
本稿では,高度にスケーラブルなコンポーネントワイドブースティングアルゴリズムを用いて適用可能な,解釈可能な付加モデルを構築するAutoMLシステムを提案する。
我々のシステムは、部分的な効果やペアの相互作用を可視化するなど、簡単なモデル解釈のためのツールを提供する。
解釈可能なモデル空間に制限があるにもかかわらず、我々のシステムは、ほとんどのデータセットにおける予測性能の点で競争力がある。
論文 参考訳(メタデータ) (2021-09-12T18:34:33Z) - A Rigorous Machine Learning Analysis Pipeline for Biomedical Binary
Classification: Application in Pancreatic Cancer Nested Case-control Studies
with Implications for Bias Assessments [2.9726886415710276]
バイナリ分類にフォーカスした、厳格で厳格なML分析パイプラインをレイアウトし、組み立てました。
この'自動'だがカスタマイズ可能なパイプラインは、a)探索分析、b)データのクリーニングと変換、c)特徴選択、d)9つの確立されたMLアルゴリズムによるモデルトレーニングを含む。
本パイプラインは,癌に対する確立された,新たに同定されたリスクファクターの疫学的検討に適用し,MLアルゴリズムによって異なるバイアス源がどのように扱われるかを評価する。
論文 参考訳(メタデータ) (2020-08-28T19:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。