A Survey on Employing Large Language Models for Text-to-SQL Tasks
- URL: http://arxiv.org/abs/2407.15186v4
- Date: Thu, 7 Nov 2024 03:26:58 GMT
- Title: A Survey on Employing Large Language Models for Text-to-SQL Tasks
- Authors: Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, Zhi Yang,
- Abstract summary: The increasing volume of data in relational databases pose challenges for users to access and analyze data.
Text-to-sql (Text2) solves the issues by utilizing natural language processing (NLP) techniques to convert natural language intosql queries.
With the development of Large Language Models (LLMs), a range of LLM-based Text2 methods have emerged.
- Score: 9.527891544418805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing volume of data in relational databases and the expertise needed for writing SQL queries pose challenges for users to access and analyze data. Text-to-SQL (Text2SQL) solves the issues by utilizing natural language processing (NLP) techniques to convert natural language into SQL queries. With the development of Large Language Models (LLMs), a range of LLM-based Text2SQL methods have emerged. This survey provides a comprehensive review of LLMs in Text2SQL tasks. We review benchmark datasets, prompt engineering methods, fine-tuning methods, and base models in LLM-based Text2SQL methods. We provide insights in each part and discuss future directions in this field.
Related papers
- PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
Large Language Models (LLMs) have emerged as powerful tools for Text-to-sense tasks.
In this study, we propose that employing query group partitioning allows LLMs to focus on learning the thought processes specific to a single problem type.
arXiv Detail & Related papers (2024-09-21T09:33:14Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
Generating accuratesql from natural language questions (text-to-) is a long-standing challenge.
PLMs have been developed and utilized for text-to- tasks, achieving promising performance.
Recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding.
arXiv Detail & Related papers (2024-06-12T17:13:17Z) - Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM [15.888784472807775]
Existing methods rely on the comprehensive capability of large language models (LLMs) to generate queries.
We propose the Knowledge-to- Data Expert framework, which employs tailored knowledge for all text-to- models.
arXiv Detail & Related papers (2024-02-18T09:10:04Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
We propose a Text-to-aware prompting framework, involving a sample and a dynamic revision chain.
Our approach incorporates sample demonstrations and fine-grained information related to the given question.
To generate executable and accuratesqls without human intervention, we design a dynamic revision chain which iteratively adapts fine-grained feedback.
arXiv Detail & Related papers (2023-07-11T07:16:22Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
The goal of text-to-corpora parsing is to convert a natural language (NL) question to its corresponding structured query language () based on the evidences provided by databases.
Deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output query.
arXiv Detail & Related papers (2022-08-29T14:24:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.