Generalizing vision-language models to novel domains: A comprehensive survey
- URL: http://arxiv.org/abs/2506.18504v2
- Date: Mon, 30 Jun 2025 05:24:22 GMT
- Title: Generalizing vision-language models to novel domains: A comprehensive survey
- Authors: Xinyao Li, Jingjing Li, Fengling Li, Lei Zhu, Yang Yang, Heng Tao Shen,
- Abstract summary: Vision-language pretraining has emerged as a transformative technique that integrates the strengths of both visual and textual modalities.<n>This survey aims to comprehensively summarize the generalization settings, methodologies, benchmarking and results in VLM literatures.
- Score: 55.97518817219619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, vision-language pretraining has emerged as a transformative technique that integrates the strengths of both visual and textual modalities, resulting in powerful vision-language models (VLMs). Leveraging web-scale pretraining data, these models exhibit strong zero-shot capabilities. However, their performance often deteriorates when confronted with domain-specific or specialized generalization tasks. To address this, a growing body of research focuses on transferring or generalizing the rich knowledge embedded in VLMs to various downstream applications. This survey aims to comprehensively summarize the generalization settings, methodologies, benchmarking and results in VLM literatures. Delving into the typical VLM structures, current literatures are categorized into prompt-based, parameter-based and feature-based methods according to the transferred modules. The differences and characteristics in each category are furthered summarized and discussed by revisiting the typical transfer learning (TL) settings, providing novel interpretations for TL in the era of VLMs. Popular benchmarks for VLM generalization are further introduced with thorough performance comparisons among the reviewed methods. Following the advances in large-scale generalizable pretraining, this survey also discusses the relations and differences between VLMs and up-to-date multimodal large language models (MLLM), e.g., DeepSeek-VL. By systematically reviewing the surging literatures in vision-language research from a novel and practical generalization prospective, this survey contributes to a clear landscape of current and future multimodal researches.
Related papers
- Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting [70.83781268763215]
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training.<n>VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion.<n>This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems.
arXiv Detail & Related papers (2025-08-06T09:03:10Z) - Are Unified Vision-Language Models Necessary: Generalization Across Understanding and Generation [50.22361866757033]
unified vision-language models (VLMs) integrate both visual understanding and generation capabilities.<n>This paper systematically investigates the generalization across understanding and generation tasks in unifiedVLMs.
arXiv Detail & Related papers (2025-05-29T03:40:21Z) - An Empirical Study of Federated Prompt Learning for Vision Language Model [50.73746120012352]
This paper systematically investigates behavioral differences between language prompt learning and vision prompt learning.<n>We conduct experiments to evaluate the impact of various fl and prompt configurations, such as client scale, aggregation strategies, and prompt length.<n>We explore strategies for enhancing prompt learning in complex scenarios where label skew and domain shift coexist.
arXiv Detail & Related papers (2025-05-29T03:09:15Z) - Vision-Language Modeling Meets Remote Sensing: Models, Datasets and Perspectives [36.297745473653166]
Vision-language modeling (VLM) aims to bridge the information gap between images and natural language.<n>Under the new paradigm of first pre-training on massive image-text pairs and then fine-tuning on task-specific data, VLM in the remote sensing domain has made significant progress.
arXiv Detail & Related papers (2025-05-20T13:47:40Z) - A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges [6.530386181196826]
Multimodal Vision Language Models (VLMs) have emerged as a transformative topic at the intersection of computer vision and natural language processing.<n>With their rapid advancements in research and growing popularity in various applications, we provide a comprehensive survey of VLMs.
arXiv Detail & Related papers (2025-01-04T04:59:33Z) - Recent advances in text embedding: A Comprehensive Review of Top-Performing Methods on the MTEB Benchmark [0.0]
We provide an overview of the advances in universal text embedding models with a focus on the top performing text embeddings on Massive Text Embedding Benchmark (MTEB)
Through detailed comparison and analysis, we highlight the key contributions and limitations in this area, and propose potentially inspiring future research directions.
arXiv Detail & Related papers (2024-05-27T09:52:54Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
Multimodal Large Language Models (MLLMs) can seamlessly integrate visual and textual modalities.
This paper provides a review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques.
arXiv Detail & Related papers (2024-02-19T19:01:01Z) - Dive into the Chasm: Probing the Gap between In- and Cross-Topic
Generalization [66.4659448305396]
This study analyzes various LMs with three probing-based experiments to shed light on the reasons behind the In- vs. Cross-Topic generalization gap.
We demonstrate, for the first time, that generalization gaps and the robustness of the embedding space vary significantly across LMs.
arXiv Detail & Related papers (2024-02-02T12:59:27Z) - Benchmarking Zero-Shot Recognition with Vision-Language Models: Challenges on Granularity and Specificity [45.86789047206224]
This paper presents novel benchmarks for evaluating vision-language models (VLMs) in zero-shot recognition.
Our benchmarks test VLMs' consistency in understanding concepts across semantic granularity levels and their response to varying text specificity.
Findings show that VLMs favor moderately fine-grained concepts and struggle with specificity, often misjudging texts that differ from their training data.
arXiv Detail & Related papers (2023-06-28T09:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.