Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
- URL: http://arxiv.org/abs/2407.15192v1
- Date: Sun, 21 Jul 2024 15:12:19 GMT
- Title: Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
- Authors: Joshua Shay Kricheli, Khoa Vo, Aniruddha Datta, Spencer Ozgur, Paulo Shakarian,
- Abstract summary: We present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models.
We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets.
- Score: 2.0007789979629784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
Related papers
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Unsupervised Continual Anomaly Detection with Contrastively-learned
Prompt [80.43623986759691]
We introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD.
The framework equips the UAD with continual learning capability through contrastively-learned prompts.
We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation.
arXiv Detail & Related papers (2024-01-02T03:37:11Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Neuro-symbolic model for cantilever beams damage detection [0.0]
We propose a neuro-symbolic model for the detection of damages in cantilever beams based on a novel cognitive architecture.
The hybrid discriminative model is introduced under the name Logic Convolutional Neural Regressor.
arXiv Detail & Related papers (2023-05-04T13:12:39Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Automatic Rule Induction for Efficient Semi-Supervised Learning [56.91428251227253]
Semi-supervised learning has shown promise in allowing NLP models to generalize from small amounts of labeled data.
Pretrained transformer models act as black-box correlation engines that are difficult to explain and sometimes behave unreliably.
We propose tackling both of these challenges via Automatic Rule Induction (ARI), a simple and general-purpose framework.
arXiv Detail & Related papers (2022-05-18T16:50:20Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results.
An automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks.
Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.
arXiv Detail & Related papers (2020-08-11T11:59:48Z) - Implicit supervision for fault detection and segmentation of emerging
fault types with Deep Variational Autoencoders [1.160208922584163]
We propose a variational autoencoder (VAE) with labeled and unlabeled samples while inducing implicit supervision on the latent representation of the healthy conditions.
This creates a compact and informative latent representation that allows good detection and segmentation of unseen fault types.
In an extensive comparison, we demonstrate that the proposed method outperforms other learning strategies.
arXiv Detail & Related papers (2019-12-28T18:40:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.