Benchmark Granularity and Model Robustness for Image-Text Retrieval
- URL: http://arxiv.org/abs/2407.15239v4
- Date: Mon, 09 Jun 2025 14:08:47 GMT
- Title: Benchmark Granularity and Model Robustness for Image-Text Retrieval
- Authors: Mariya Hendriksen, Shuo Zhang, Ridho Reinanda, Mohamed Yahya, Edgar Meij, Maarten de Rijke,
- Abstract summary: We show how dataset granularity and query perturbations affect retrieval performance and robustness.<n>We show that richer captions consistently enhance retrieval, especially in text-to-image tasks.<n>Our results highlight variation in model robustness and a dataset-dependent relationship between caption granularity and sensitivity perturbation.
- Score: 44.045767657945895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-Text Retrieval (ITR) systems are central to multimodal information access, with Vision-Language Models (VLMs) showing strong performance on standard benchmarks. However, these benchmarks predominantly rely on coarse-grained annotations, limiting their ability to reveal how models perform under real-world conditions, where query granularity varies. Motivated by this gap, we examine how dataset granularity and query perturbations affect retrieval performance and robustness across four architecturally diverse VLMs (ALIGN, AltCLIP, CLIP, and GroupViT). Using both standard benchmarks (MS-COCO, Flickr30k) and their fine-grained variants, we show that richer captions consistently enhance retrieval, especially in text-to-image tasks, where we observe an average improvement of 16.23%, compared to 6.44% in image-to-text. To assess robustness, we introduce a taxonomy of perturbations and conduct extensive experiments, revealing that while perturbations typically degrade performance, they can also unexpectedly improve retrieval, exposing nuanced model behaviors. Notably, word order emerges as a critical factor -- contradicting prior assumptions of model insensitivity to it. Our results highlight variation in model robustness and a dataset-dependent relationship between caption granularity and perturbation sensitivity and emphasize the necessity of evaluating models on datasets of varying granularity.
Related papers
- Towards Robust Semantic Correspondence: A Benchmark and Insights [0.0]
We establish a novel benchmark for evaluating semantic correspondence in adverse conditions.<n>The benchmark dataset comprises 14 distinct challenging scenarios that reflect commonly encountered imaging issues.<n>We provide several key insights into the robustness of semantic correspondence approaches.
arXiv Detail & Related papers (2025-08-01T02:38:39Z) - RoHOI: Robustness Benchmark for Human-Object Interaction Detection [38.09248570129455]
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support.<n>We introduce the first benchmark for HOI detection, evaluating model resilience under diverse challenges.<n>Our benchmark, RoHOI, includes 20 corruption types based on HICO-DET and V-COCO datasets and a new robustness-focused metric.
arXiv Detail & Related papers (2025-07-12T01:58:04Z) - LGAI-EMBEDDING-Preview Technical Report [41.68404082385825]
This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks.<n>Our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings.<n>Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score.
arXiv Detail & Related papers (2025-06-09T05:30:35Z) - Resampling Benchmark for Efficient Comprehensive Evaluation of Large Vision-Language Models [18.309464845180237]
We propose an efficient evaluation protocol for large vision-language models (VLMs)
We construct a subset that yields results comparable to full benchmark evaluations.
Applying FPS to an existing benchmark improves correlation with overall evaluation results.
arXiv Detail & Related papers (2025-04-14T08:43:00Z) - Mixed Signals: Decoding VLMs' Reasoning and Underlying Bias in Vision-Language Conflict [3.9495397165148023]
We show how vision-language models (VLMs) reason when confronted with scenarios that present conflicting image and text cues.<n>Our analysis shows that VLMs favor text in simpler queries but shift toward images as query complexity increases.<n>In addition, we explore three mitigation strategies: simple prompt modifications, modifications that explicitly instruct models on how to handle conflicting information.
arXiv Detail & Related papers (2025-04-11T20:56:52Z) - Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing [84.16442052968615]
We introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE)<n>RISEBench focuses on four key reasoning categories: Temporal, Causal, Spatial, and Logical Reasoning.<n>We conduct experiments evaluating nine prominent visual editing models, comprising both open-source and proprietary models.
arXiv Detail & Related papers (2025-04-03T17:59:56Z) - HMGIE: Hierarchical and Multi-Grained Inconsistency Evaluation for Vision-Language Data Cleansing [54.970275599061594]
We design an adaptive evaluation framework, called Hierarchical and Multi-Grained Inconsistency Evaluation (HMGIE)
HMGIE can provide multi-grained evaluations covering both accuracy and completeness for various image-caption pairs.
To verify the efficacy and flexibility of the proposed framework, we construct MVTID, an image-caption dataset with diverse types and granularities of inconsistencies.
arXiv Detail & Related papers (2024-12-07T15:47:49Z) - Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
We introduce a new approach for fine-grained evaluation.
Our approach can be applied to existing datasets by automatically generating hard negative test captions.
Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
arXiv Detail & Related papers (2024-10-16T09:42:29Z) - LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.<n>LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.<n>We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - FiCo-ITR: bridging fine-grained and coarse-grained image-text retrieval for comparative performance analysis [1.0972875392165036]
This paper introduces the textttFiCo-ITR library, which standardises evaluation methodologies for both Fine-Grained (FG) and Coarse-Grained (CG) models.
We conduct empirical evaluations of representative models from both subfields, analysing precision, recall, and computational complexity.
Our findings offer new insights into the performance-efficiency trade-offs between recent representative FG and CG models, highlighting their respective strengths and limitations.
arXiv Detail & Related papers (2024-07-29T15:44:22Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Robustness Analysis on Foundational Segmentation Models [28.01242494123917]
In this work, we perform a robustness analysis of Visual Foundation Models (VFMs) for segmentation tasks.
We benchmark seven state-of-the-art segmentation architectures using 2 different datasets.
Our findings reveal several key insights: VFMs exhibit vulnerabilities to compression-induced corruptions, despite not outpacing all of unimodal models in robustness, multimodal models show competitive resilience in zero-shot scenarios, and VFMs demonstrate enhanced robustness for certain object categories.
arXiv Detail & Related papers (2023-06-15T16:59:42Z) - Rethinking Benchmarks for Cross-modal Image-text Retrieval [44.31783230767321]
Cross-modal semantic understanding and matching is a major challenge in image-text retrieval.
In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching.
We propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort.
The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding.
arXiv Detail & Related papers (2023-04-21T09:07:57Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - A Systematic Investigation of Commonsense Understanding in Large
Language Models [23.430757316504316]
Large language models have shown impressive performance on many natural language processing (NLP) tasks in a zero-shot setting.
We ask whether these models exhibit commonsense understanding by evaluating models against four commonsense benchmarks.
arXiv Detail & Related papers (2021-10-31T22:20:36Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
We introduce BEIR, a heterogeneous benchmark for information retrieval.
We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup.
Dense-retrieval models are computationally more efficient but often underperform other approaches.
arXiv Detail & Related papers (2021-04-17T23:29:55Z) - Towards Understanding Sample Variance in Visually Grounded Language
Generation: Evaluations and Observations [67.4375210552593]
We design experiments to understand an important but often ignored problem in visually grounded language generation.
Given that humans have different utilities and visual attention, how will the sample variance in multi-reference datasets affect the models' performance?
We show that it is of paramount importance to report variance in experiments; that human-generated references could vary drastically in different datasets/tasks, revealing the nature of each task.
arXiv Detail & Related papers (2020-10-07T20:45:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.