Towards Robust Semantic Correspondence: A Benchmark and Insights
- URL: http://arxiv.org/abs/2508.00272v1
- Date: Fri, 01 Aug 2025 02:38:39 GMT
- Title: Towards Robust Semantic Correspondence: A Benchmark and Insights
- Authors: Wenyue Chong,
- Abstract summary: We establish a novel benchmark for evaluating semantic correspondence in adverse conditions.<n>The benchmark dataset comprises 14 distinct challenging scenarios that reflect commonly encountered imaging issues.<n>We provide several key insights into the robustness of semantic correspondence approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic correspondence aims to identify semantically meaningful relationships between different images and is a fundamental challenge in computer vision. It forms the foundation for numerous tasks such as 3D reconstruction, object tracking, and image editing. With the progress of large-scale vision models, semantic correspondence has achieved remarkable performance in controlled and high-quality conditions. However, the robustness of semantic correspondence in challenging scenarios is much less investigated. In this work, we establish a novel benchmark for evaluating semantic correspondence in adverse conditions. The benchmark dataset comprises 14 distinct challenging scenarios that reflect commonly encountered imaging issues, including geometric distortion, image blurring, digital artifacts, and environmental occlusion. Through extensive evaluations, we provide several key insights into the robustness of semantic correspondence approaches: (1) All existing methods suffer from noticeable performance drops under adverse conditions; (2) Using large-scale vision models can enhance overall robustness, but fine-tuning on these models leads to a decline in relative robustness; (3) The DINO model outperforms the Stable Diffusion in relative robustness, and their fusion achieves better absolute robustness; Moreover, We evaluate common robustness enhancement strategies for semantic correspondence and find that general data augmentations are ineffective, highlighting the need for task-specific designs. These results are consistent across both our dataset and real-world benchmarks.
Related papers
- Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
We introduce a framework in which a model must determine the factors influencing a hidden reward function.<n>We investigate whether approaches such as self- throughput and increased inference time improve information gathering efficiency.
arXiv Detail & Related papers (2024-12-09T12:27:21Z) - Benchmark Granularity and Model Robustness for Image-Text Retrieval [44.045767657945895]
We show how dataset granularity and query perturbations affect retrieval performance and robustness.<n>We show that richer captions consistently enhance retrieval, especially in text-to-image tasks.<n>Our results highlight variation in model robustness and a dataset-dependent relationship between caption granularity and sensitivity perturbation.
arXiv Detail & Related papers (2024-07-21T18:08:44Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
Vision State Space Models (VSSMs) have demonstrated remarkable performance in visual perception tasks.
However, their robustness under natural and adversarial perturbations remains a critical concern.
We present a comprehensive evaluation of VSSMs' robustness under various perturbation scenarios.
arXiv Detail & Related papers (2024-06-13T17:59:44Z) - Towards Robust and Expressive Whole-body Human Pose and Shape Estimation [51.457517178632756]
Whole-body pose and shape estimation aims to jointly predict different behaviors of the entire human body from a monocular image.
Existing methods often exhibit degraded performance under the complexity of in-the-wild scenarios.
We propose a novel framework to enhance the robustness of whole-body pose and shape estimation.
arXiv Detail & Related papers (2023-12-14T08:17:42Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps.
We propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores.
Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability.
arXiv Detail & Related papers (2023-12-10T22:07:42Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
Interpretability is as essential as robustness when we deploy the models to the real world.
Standard models, compared to robust are more susceptible to adversarial attacks, and their learned representations are less meaningful to humans.
arXiv Detail & Related papers (2023-07-04T13:51:55Z) - Exposing and Addressing Cross-Task Inconsistency in Unified
Vision-Language Models [80.23791222509644]
Inconsistent AI models are considered brittle and untrustworthy by human users.
We find that state-of-the-art vision-language models suffer from a surprisingly high degree of inconsistent behavior across tasks.
We propose a rank correlation-based auxiliary training objective, computed over large automatically created cross-task contrast sets.
arXiv Detail & Related papers (2023-03-28T16:57:12Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - Robustness in Deep Learning for Computer Vision: Mind the gap? [13.576376492050185]
We identify, analyze, and summarize current definitions and progress towards non-adversarial robustness in deep learning for computer vision.
We find that this area of research has received disproportionately little attention relative to adversarial machine learning.
arXiv Detail & Related papers (2021-12-01T16:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.