AI as a Tool for Fair Journalism: Case Studies from Malta
- URL: http://arxiv.org/abs/2407.15316v1
- Date: Mon, 8 Jul 2024 15:02:39 GMT
- Title: AI as a Tool for Fair Journalism: Case Studies from Malta
- Authors: Dylan Seychell, Gabriel Hili, Jonathan Attard, Konstantinos Makantatis,
- Abstract summary: Two projects focus on media monitoring and present tools designed to analyse potential biases in news articles and television news segments.
The first project uses Computer Vision and Natural Language Processing techniques to analyse the coherence between images in news articles and their corresponding captions, headlines, and article bodies.
The second project employs computer vision techniques to track individuals on-screen time or visual exposure in news videos, providing queryable data.
- Score: 0.07499722271664144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today`s media landscape, the role of Artificial Intelligence (AI) in shaping societal perspectives and journalistic integrity is becoming increasingly apparent. This paper presents two case studies centred on Malta`s media market featuring technical novelty. Despite its relatively small scale, Malta offers invaluable insights applicable to both similar and broader media contexts. These two projects focus on media monitoring and present tools designed to analyse potential biases in news articles and television news segments. The first project uses Computer Vision and Natural Language Processing techniques to analyse the coherence between images in news articles and their corresponding captions, headlines, and article bodies. The second project employs computer vision techniques to track individuals` on-screen time or visual exposure in news videos, providing queryable data. These initiatives aim to contribute to society by providing both journalists and the public with the means to identify biases. Furthermore, we make these tools accessible to journalists to improve the trustworthiness of media outlets by offering robust tools for detecting and reducing bias.
Related papers
- Automated Journalism [0.0]
Automated journalism refers to the process of automating the collection, production, and distribution of news content.
Early adopters have praised the usefulness of automated journalism for generating routine news based on clean, structured data.
Research on automated journalism is alerting to the dangers of using algorithms for news creation and distribution.
arXiv Detail & Related papers (2024-09-05T12:19:03Z) - Breaking News: Case Studies of Generative AI's Use in Journalism [18.67676679963561]
We conduct a study of journalist-AI interactions by two news agencies through browsing the WildChat dataset.
Our analysis uncovers instances where journalists provide sensitive material such as confidential correspondence with sources or articles from other agencies to the LLM as stimuli and prompt it to generate articles.
Based on our findings, we call for further research into what constitutes responsible use of AI, and the establishment of clear guidelines and best practices on using LLMs in a journalistic context.
arXiv Detail & Related papers (2024-06-19T16:58:32Z) - Understanding Practices around Computational News Discovery Tools in the
Domain of Science Journalism [3.660182910533372]
We explore computational methods to aid these journalists' news discovery in terms of time-efficiency and agency.
We prototyped three computational information subsidies into an interactive tool that we used as a probe to better understand how such a tool may offer utility.
Our findings contribute a richer view of the sociotechnical system around computational news discovery tools, and suggest ways to improve such tools to better support the practices of science journalists.
arXiv Detail & Related papers (2023-11-12T14:47:50Z) - Identifying Informational Sources in News Articles [109.70475599552523]
We build the largest and widest-ranging annotated dataset of informational sources used in news writing.
We introduce a novel task, source prediction, to study the compositionality of sources in news articles.
arXiv Detail & Related papers (2023-05-24T08:56:35Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information.
To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles.
Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance.
arXiv Detail & Related papers (2023-05-23T16:40:07Z) - Framing the News:From Human Perception to Large Language Model
Inferences [8.666172545138272]
Identifying the frames of news is important to understand the articles' vision, intention, message to be conveyed, and which aspects of the news are emphasized.
We develop a protocol for human labeling of frames for 1786 headlines of No-Vax movement articles of European newspapers from 5 countries.
We investigate two approaches for frame inference of news headlines: first with a GPT-3.5 fine-tuning approach, and second with GPT-3.5 prompt-engineering.
arXiv Detail & Related papers (2023-04-27T18:30:18Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
Recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost.
This paper provides a comprehensive review of the current media tampering detection approaches, and discusses the challenges and trends in this field for future research.
arXiv Detail & Related papers (2022-12-12T02:54:08Z) - A Structured Analysis of Journalistic Evaluations for News Source
Reliability [0.456877715768796]
We evaluate two procedures for assessing the risk of online media exposing their readers to m/disinformation.
The result of our analysis shows a good degree of agreement, which in our opinion has a double value.
arXiv Detail & Related papers (2022-05-05T16:16:03Z) - VMSMO: Learning to Generate Multimodal Summary for Video-based News
Articles [63.32111010686954]
We propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO)
The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article.
We propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator.
arXiv Detail & Related papers (2020-10-12T02:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.