Hierarchical Homogeneity-Based Superpixel Segmentation: Application to Hyperspectral Image Analysis
- URL: http://arxiv.org/abs/2407.15321v1
- Date: Mon, 22 Jul 2024 01:20:32 GMT
- Title: Hierarchical Homogeneity-Based Superpixel Segmentation: Application to Hyperspectral Image Analysis
- Authors: Luciano Carvalho Ayres, Sérgio José Melo de Almeida, José Carlos Moreira Bermudez, Ricardo Augusto Borsoi,
- Abstract summary: We propose a multiscale superpixel method that is computationally efficient for processing hyperspectral data.
The proposed hierarchical approach leads to superpixels of variable sizes but with higher spectral homogeneity.
For validation, the proposed homogeneity-based hierarchical method was applied as a preprocessing step in the spectral unmixing and classification tasks.
- Score: 11.612069983959985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HI) analysis approaches have recently become increasingly complex and sophisticated. Recently, the combination of spectral-spatial information and superpixel techniques have addressed some hyperspectral data issues, such as the higher spatial variability of spectral signatures and dimensionality of the data. However, most existing superpixel approaches do not account for specific HI characteristics resulting from its high spectral dimension. In this work, we propose a multiscale superpixel method that is computationally efficient for processing hyperspectral data. The Simple Linear Iterative Clustering (SLIC) oversegmentation algorithm, on which the technique is based, has been extended hierarchically. Using a novel robust homogeneity testing, the proposed hierarchical approach leads to superpixels of variable sizes but with higher spectral homogeneity when compared to the classical SLIC segmentation. For validation, the proposed homogeneity-based hierarchical method was applied as a preprocessing step in the spectral unmixing and classification tasks carried out using, respectively, the Multiscale sparse Unmixing Algorithm (MUA) and the CNN-Enhanced Graph Convolutional Network (CEGCN) methods. Simulation results with both synthetic and real data show that the technique is competitive with state-of-the-art solutions.
Related papers
- Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - A new filter for dimensionality reduction and classification of
hyperspectral images using GLCM features and mutual information [0.0]
We introduce a new methodology for dimensionality reduction and classification of hyperspectral images.
We take into account both spectral and spatial information based on mutual information.
Experiments are performed on three well-known hyperspectral benchmark datasets.
arXiv Detail & Related papers (2022-11-01T13:19:08Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Spectral Unmixing of Hyperspectral Images Based on Block Sparse
Structure [1.491109220586182]
This paper presents an innovative spectral unmixing approach for hyperspectral images (HSIs) based on block-sparse structure and sparse Bayesian learning strategy.
arXiv Detail & Related papers (2022-04-10T09:37:41Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features.
We propose several approaches to HSI segmentation based on M-GSP feature extraction.
Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.
arXiv Detail & Related papers (2021-11-29T23:28:18Z) - LADMM-Net: An Unrolled Deep Network For Spectral Image Fusion From
Compressive Data [6.230751621285322]
Hyperspectral (HS) and multispectral (MS) image fusion aims at estimating a high-resolution spectral image from a low-spatial-resolution HS image and a low-spectral-resolution MS image.
In this work, a deep learning architecture under the algorithm unrolling approach is proposed for solving the fusion problem from HS and MS compressive measurements.
arXiv Detail & Related papers (2021-03-01T12:04:42Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral Image Classification Based on Sparse Modeling of Spectral
Blocks [6.99674326582747]
A sparse modeling framework is proposed for hyperspectral image classification.
The proposed method leads to a robust sparse modeling of hyperspectral images and improves the classification accuracy.
arXiv Detail & Related papers (2020-05-17T08:18:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.