論文の概要: Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.15328v2
- Date: Wed, 31 Jul 2024 13:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:55:28.163171
- Title: Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models
- Title(参考訳): 拡散モデルにおける記憶の緩和のための反勾配制御による反復的アンサンブル訓練
- Authors: Xiao Liu, Xiaoliu Guan, Yu Wu, Jiaxu Miao,
- Abstract要約: 拡散モデルは、新規で高品質なサンプルを生成できることで知られている。
最近のメモリ緩和手法は、クロスモーダル生成タスクにおけるテキストモダリティ問題にのみ焦点をあてるか、あるいはデータ拡張戦略を利用するかのどちらかである。
本稿では,視覚的モダリティの観点からの拡散モデルのための新しいトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 20.550324116099357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models, known for their tremendous ability to generate novel and high-quality samples, have recently raised concerns due to their data memorization behavior, which poses privacy risks. Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies. In this paper, we propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization. To facilitate forgetting of stored information in diffusion model parameters, we propose an iterative ensemble training strategy by splitting the data into multiple shards for training multiple models and intermittently aggregating these model parameters. Moreover, practical analysis of losses illustrates that the training loss for easily memorable images tends to be obviously lower. Thus, we propose an anti-gradient control method to exclude the sample with a lower loss value from the current mini-batch to avoid memorizing. Extensive experiments and analysis on four datasets are conducted to illustrate the effectiveness of our method, and results show that our method successfully reduces memory capacity while even improving the performance slightly. Moreover, to save the computing cost, we successfully apply our method to fine-tune the well-trained diffusion models by limited epochs, demonstrating the applicability of our method. Code is available in https://github.com/liuxiao-guan/IET_AGC.
- Abstract(参考訳): 拡散モデルは、新鮮で高品質なサンプルを生成する能力で知られており、最近、データ記憶の振る舞いがプライバシーのリスクを引き起こすという懸念を提起している。
最近のメモリ緩和手法は、クロスモーダル生成タスクにおけるテキストモダリティ問題にのみ焦点をあてるか、あるいはデータ拡張戦略を利用するかのどちらかである。
本稿では,視覚的モダリティの観点からの拡散モデルのための新しいトレーニングフレームワークを提案する。
拡散モデルパラメータに格納された情報を忘れるのを容易にするため,複数のモデルのトレーニングのためにデータを複数のシャードに分割し,間欠的にこれらのモデルパラメータを集約することで,反復的なアンサンブルトレーニング戦略を提案する。
さらに, 記憶し易い画像に対するトレーニング損失が明らかに低い傾向にあることを示す。
そこで本研究では,従来のミニバッチから損失値の低いサンプルを排除し,メモリ化を回避するための逆勾配制御手法を提案する。
提案手法の有効性を示すために,4つのデータセットの大規模な実験と解析を行い,本手法が性能をわずかに改善しつつ,メモリ容量の削減に成功していることを示す。
さらに, 計算コストの削減を図るため, 十分に訓練された拡散モデルを限られたエポックで微調整し, 本手法の適用性を実証した。
コードはhttps://github.com/liuxiao-guan/IET_AGCで入手できる。
関連論文リスト
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
本稿では,任意の破損型を持つ雑音データから拡散モデルを反復的に学習する,原則的予測最大化(EM)フレームワークを提案する。
筆者らはモンテカルロ法を用いて,ノイズ測定からクリーンな画像を正確に推定し,次いで再構成画像を用いて拡散モデルを訓練した。
論文 参考訳(メタデータ) (2024-10-15T03:54:59Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
大規模テキスト・画像拡散モデルはテキスト入力から高品質な画像を生成するのに優れている。
研究は、トレーニングデータを記憶し複製する傾向を示すため、懸念が生じる。
データ重複、複製されたキャプション、トークンのトリガーなどの原因を探る。
論文 参考訳(メタデータ) (2024-06-01T15:47:13Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
トレーニングメンバーシップ推論(TMI)タスクは、ターゲットモデルのトレーニングプロセスで特定のサンプルが使用されているかどうかを判断することを目的としている。
本稿では,拡散モデル内における本質的な生成先行情報を活用することで,TMIタスクの新たな視点を探求する。
論文 参考訳(メタデータ) (2024-03-13T12:52:37Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - A Data-Centric Approach for Improving Adversarial Training Through the
Lens of Out-of-Distribution Detection [0.4893345190925178]
複雑なアルゴリズムを適用して効果を緩和するのではなく, トレーニング手順から直接ハードサンプルを検出し, 除去することを提案する。
SVHN と CIFAR-10 データセットを用いた結果,計算コストの増大を伴わずに対角訓練の改善に本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-01-25T08:13:50Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。