Explore the LiDAR-Camera Dynamic Adjustment Fusion for 3D Object Detection
- URL: http://arxiv.org/abs/2407.15334v1
- Date: Mon, 22 Jul 2024 02:42:15 GMT
- Title: Explore the LiDAR-Camera Dynamic Adjustment Fusion for 3D Object Detection
- Authors: Yiran Yang, Xu Gao, Tong Wang, Xin Hao, Yifeng Shi, Xiao Tan, Xiaoqing Ye, Jingdong Wang,
- Abstract summary: Camera and LiDAR serve as informative sensors for accurate and robust autonomous driving systems.
These sensors often exhibit heterogeneous natures, resulting in distributional modality gaps.
We introduce a dynamic adjustment technology aimed at aligning modal distributions and learning effective modality representations.
- Score: 38.809645060899065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camera and LiDAR serve as informative sensors for accurate and robust autonomous driving systems. However, these sensors often exhibit heterogeneous natures, resulting in distributional modality gaps that present significant challenges for fusion. To address this, a robust fusion technique is crucial, particularly for enhancing 3D object detection. In this paper, we introduce a dynamic adjustment technology aimed at aligning modal distributions and learning effective modality representations to enhance the fusion process. Specifically, we propose a triphase domain aligning module. This module adjusts the feature distributions from both the camera and LiDAR, bringing them closer to the ground truth domain and minimizing differences. Additionally, we explore improved representation acquisition methods for dynamic fusion, which includes modal interaction and specialty enhancement. Finally, an adaptive learning technique that merges the semantics and geometry information for dynamical instance optimization. Extensive experiments in the nuScenes dataset present competitive performance with state-of-the-art approaches. Our code will be released in the future.
Related papers
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusion is a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism.
Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements.
arXiv Detail & Related papers (2024-08-12T06:46:05Z) - vFusedSeg3D: 3rd Place Solution for 2024 Waymo Open Dataset Challenge in Semantic Segmentation [0.0]
VFusedSeg3D uses the rich semantic content of the camera pictures and the accurate depth sensing of LiDAR to generate a strong and comprehensive environmental understanding.
Our novel feature fusion technique combines geometric features from LiDAR point clouds with semantic features from camera images.
With the use of multi-modality techniques, performance has significantly improved, yielding a state-of-the-art mIoU of 72.46% on the validation set.
arXiv Detail & Related papers (2024-08-09T11:34:19Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System [0.0]
We propose a novel approach to address the problem of camera and radar sensor fusion for 3D object detection in autonomous vehicle perception systems.
Our approach builds on recent advances in deep learning and leverages the strengths of both sensors to improve object detection performance.
Our results show that the proposed approach achieves superior performance over single-sensor solutions and could directly compete with other top-level fusion methods.
arXiv Detail & Related papers (2024-04-25T12:04:31Z) - AlignMiF: Geometry-Aligned Multimodal Implicit Field for LiDAR-Camera
Joint Synthesis [98.3959800235485]
Recently, there exist some methods exploring multiple modalities within a single field, aiming to share implicit features from different modalities to enhance reconstruction performance.
In this work, we conduct comprehensive analyses on the multimodal implicit field of LiDAR-camera joint synthesis, revealing the underlying issue lies in the misalignment of different sensors.
We introduce AlignMiF, a geometrically aligned multimodal implicit field with two proposed modules: Geometry-Aware Alignment (GAA) and Shared Geometry Initialization (SGI)
arXiv Detail & Related papers (2024-02-27T13:08:47Z) - ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3D multi-object tracking (MOT) is essential for an autonomous mobile agent to safely navigate a scene.
We aim to develop a 3D MOT framework that fuses camera and LiDAR sensor information.
arXiv Detail & Related papers (2023-10-04T02:17:59Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR Semantic
Segmentation [78.74202673902303]
We propose a coarse-tofine LiDAR and camera fusion-based network (termed as LIF-Seg) for LiDAR segmentation.
The proposed method fully utilizes the contextual information of images and introduces a simple but effective early-fusion strategy.
The cooperation of these two components leads to the success of the effective camera-LiDAR fusion.
arXiv Detail & Related papers (2021-08-17T08:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.