Progressive Multi-Modal Fusion for Robust 3D Object Detection
- URL: http://arxiv.org/abs/2410.07475v1
- Date: Wed, 9 Oct 2024 22:57:47 GMT
- Title: Progressive Multi-Modal Fusion for Robust 3D Object Detection
- Authors: Rohit Mohan, Daniele Cattaneo, Florian Drews, Abhinav Valada,
- Abstract summary: Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
- Score: 12.048303829428452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-sensor fusion is crucial for accurate 3D object detection in autonomous driving, with cameras and LiDAR being the most commonly used sensors. However, existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV), thus sacrificing complementary information such as height or geometric proportions. To address this limitation, we propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels. Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection. Additionally, we introduce a self-supervised mask modeling pre-training strategy to improve multi-modal representation learning and data efficiency through three novel objectives. Extensive experiments on nuScenes and Argoverse2 datasets conclusively demonstrate the efficacy of ProFusion3D. Moreover, ProFusion3D is robust to sensor failure, demonstrating strong performance when only one modality is available.
Related papers
- MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusion is a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism.
Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements.
arXiv Detail & Related papers (2024-08-12T06:46:05Z) - FusionViT: Hierarchical 3D Object Detection via LiDAR-Camera Vision
Transformer Fusion [8.168523242105763]
We will introduce a novel vision transformer-based 3D object detection model, namely FusionViT.
Our FusionViT model can achieve state-of-the-art performance and outperforms existing baseline methods.
arXiv Detail & Related papers (2023-11-07T00:12:01Z) - FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal
Consistent Transformer for 3D Object Detection [14.457844173630667]
We propose a novel end-to-end multi-modal fusion transformer-based framework, dubbed FusionFormer.
By developing a uniform sampling strategy, our method can easily sample from 2D image and 3D voxel features spontaneously.
Our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time augmentation.
arXiv Detail & Related papers (2023-09-11T06:27:25Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDAR and camera fusion techniques are promising for achieving 3D object detection in autonomous driving.
Most multi-modal 3D object detection frameworks integrate semantic knowledge from 2D images into 3D LiDAR point clouds.
We propose a general multi-modal fusion framework Multi-Sem Fusion (MSF) to fuse the semantic information from both the 2D image and 3D points scene parsing results.
arXiv Detail & Related papers (2022-12-10T10:54:41Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
Fusing LiDAR and camera information is essential for achieving accurate and reliable 3D object detection in autonomous driving systems.
Recent approaches aim at exploring the semantic densities of camera features through lifting points in 2D camera images into 3D space for fusion.
We propose a novel framework that focuses on the multi-scale progressive interaction of the multi-granularity LiDAR and camera features.
arXiv Detail & Related papers (2022-09-07T12:29:29Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
We propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization.
We design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution.
arXiv Detail & Related papers (2020-12-20T18:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.