Stability of Quantum Systems beyond Canonical Typicality
- URL: http://arxiv.org/abs/2407.15345v1
- Date: Mon, 22 Jul 2024 02:59:04 GMT
- Title: Stability of Quantum Systems beyond Canonical Typicality
- Authors: Yu Su, Zi-Fan Zhu, Yao Wang, Rui-Xue Xu, YiJing Yan,
- Abstract summary: We analyze the statistical distribution of a quantum system coupled strongly with a heat bath.
The stability of system distribution is largely affected by the system--bath interaction strength.
- Score: 9.632520418947305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Involvement of the environment is indispensable for establishing the statistical distribution of system. We analyze the statistical distribution of a quantum system coupled strongly with a heat bath. This distribution is determined by tracing over the bath's degrees of freedom for the equilibrium system-plus-bath composite. The stability of system distribution is largely affected by the system--bath interaction strength. We propose that the quantum system exhibits a stable distribution only when its system response function in the frequency domain satisfies $\tilde\chi(\omega = 0+)>0$. We show our results by investigating the non-interacting bosonic impurity system from both the thermodynamic and dynamic perspectives. Our study refines the theoretical framework of canonical statistics, offering insights into thermodynamic phenomena in small-scale systems.
Related papers
- Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Spin-1/2 XXZ chain coupled to two Lindblad baths: Constructing
nonequilibrium steady states from equilibrium correlation functions [0.28087862620958753]
We show that at weak driving, the nonequilibrium steady state in an open system can remarkably be constructed just on the basis of correlation functions numerically in the closed system.
We also point out potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems.
arXiv Detail & Related papers (2023-03-01T11:37:13Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Peaceful coexistence of thermal equilibrium and the emergence of time [0.0]
We consider a quantum Universe composed by a small system S and a large environment.
Time and non-equilibrium dynamics can emerge as a consequence of the entanglement between the system and the environment.
arXiv Detail & Related papers (2021-12-08T00:36:27Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Joint statistics of work and entropy production along quantum
trajectories [0.0]
In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy when a system is driven out of equilibrium.
We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems.
As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady-states.
arXiv Detail & Related papers (2020-11-23T18:06:13Z) - Hierarchical-environment-assisted non-Markovian and its effect on
thermodynamic properties [15.450802027885135]
We show how the non-Markovian character of the system is influenced by the coupling strength of system-auxiliary system and auxiliary system-reservoir.
And the information flow between the system and environment is always accompanied by energy exchange.
arXiv Detail & Related papers (2020-10-26T17:47:27Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.