Is user feedback always informative? Retrieval Latent Defending for Semi-Supervised Domain Adaptation without Source Data
- URL: http://arxiv.org/abs/2407.15383v1
- Date: Mon, 22 Jul 2024 05:15:41 GMT
- Title: Is user feedback always informative? Retrieval Latent Defending for Semi-Supervised Domain Adaptation without Source Data
- Authors: Junha Song, Tae Soo Kim, Junha Kim, Gunhee Nam, Thijs Kooi, Jaegul Choo,
- Abstract summary: This paper aims to adapt the source model to the target environment using user feedback readily available in real-world applications.
We analyze this phenomenon via a novel concept called Negatively Biased Feedback (NBF)
We propose a scalable adapting approach, Retrieval Latent Defending.
- Score: 34.55109747972333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to adapt the source model to the target environment, leveraging small user feedback (i.e., labeled target data) readily available in real-world applications. We find that existing semi-supervised domain adaptation (SemiSDA) methods often suffer from poorly improved adaptation performance when directly utilizing such feedback data, as shown in Figure 1. We analyze this phenomenon via a novel concept called Negatively Biased Feedback (NBF), which stems from the observation that user feedback is more likely for data points where the model produces incorrect predictions. To leverage this feedback while avoiding the issue, we propose a scalable adapting approach, Retrieval Latent Defending. This approach helps existing SemiSDA methods to adapt the model with a balanced supervised signal by utilizing latent defending samples throughout the adaptation process. We demonstrate the problem caused by NBF and the efficacy of our approach across various benchmarks, including image classification, semantic segmentation, and a real-world medical imaging application. Our extensive experiments reveal that integrating our approach with multiple state-of-the-art SemiSDA methods leads to significant performance improvements.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - A Robust Negative Learning Approach to Partial Domain Adaptation Using
Source Prototypes [0.8895157045883034]
This work proposes a robust Partial Domain Adaptation (PDA) framework that mitigates the negative transfer problem.
It includes diverse, complementary label feedback, alleviating the effect of incorrect feedback and promoting pseudo-label refinement.
We conducted a series of comprehensive experiments, including an ablation analysis, covering a range of partial domain adaptation tasks.
arXiv Detail & Related papers (2023-09-07T07:26:27Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
Enhancing model prediction confidence on unlabeled target data is an important objective in Unsupervised Domain Adaptation (UDA)
We show that this strategy is more efficient and better correlated with the objective of boosting prediction confidence than adversarial training on input images or intermediate features.
arXiv Detail & Related papers (2022-08-26T19:50:46Z) - Improving Test-Time Adaptation via Shift-agnostic Weight Regularization
and Nearest Source Prototypes [18.140619966865955]
We propose a novel test-time adaptation strategy that adjusts the model pre-trained on the source domain using only unlabeled online data from the target domain.
We show that our method exhibits state-of-the-art performance on various standard benchmarks and even outperforms its supervised counterpart.
arXiv Detail & Related papers (2022-07-24T10:17:05Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.