Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
- URL: http://arxiv.org/abs/2407.15408v1
- Date: Mon, 22 Jul 2024 06:25:21 GMT
- Title: Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
- Authors: Kent Fujiwara, Mikihiro Tanaka, Qing Yu,
- Abstract summary: We propose Chronologically Accurate Retrieval to evaluate the chronological understanding of motion-language models.
We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions.
We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version.
- Score: 12.221087476416056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the release of large-scale motion datasets with textual annotations, the task of establishing a robust latent space for language and 3D human motion has recently witnessed a surge of interest. Methods have been proposed to convert human motion and texts into features to achieve accurate correspondence between them. Despite these efforts to align language and motion representations, we claim that the temporal element is often overlooked, especially for compound actions, resulting in chronological inaccuracies. To shed light on the temporal alignment in motion-language latent spaces, we propose Chronologically Accurate Retrieval (CAR) to evaluate the chronological understanding of the models. We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions. We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version. CAR reveals many cases where current motion-language models fail to distinguish the event chronology of human motion, despite their impressive performance in terms of conventional evaluation metrics. To achieve better temporal alignment between text and motion, we further propose to use these texts with shuffled sequence of events as negative samples during training to reinforce the motion-language models. We conduct experiments on text-motion retrieval and text-to-motion generation using the reinforced motion-language models, which demonstrate improved performance over conventional approaches, indicating the necessity to consider temporal elements in motion-language alignment.
Related papers
- Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
"Infinite Motion" is a novel approach that leverages long text to extended motion generation.
Key innovation of our model is its ability to accept arbitrary lengths of text as input.
We incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences.
arXiv Detail & Related papers (2024-07-11T12:33:56Z) - Joint-Dataset Learning and Cross-Consistent Regularization for Text-to-Motion Retrieval [4.454835029368504]
We focus on the recently introduced text-motion retrieval which aim to search for sequences that are most relevant to a natural motion description.
Despite recent efforts to explore these promising avenues, a primary challenge remains the insufficient data available to train robust text-motion models.
We propose to investigate joint-dataset learning - where we train on multiple text-motion datasets simultaneously.
We also introduce a transformer-based motion encoder, called MoT++, which employs the specified-temporal attention to process sequences of skeleton data.
arXiv Detail & Related papers (2024-07-02T09:43:47Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Text-controlled Motion Mamba: Text-Instructed Temporal Grounding of Human Motion [21.750804738752105]
We introduce the novel task of text-based human motion grounding (THMG)
TM-Mamba is a unified model that integrates temporal global context, language query control, and spatial graph topology with only linear memory cost.
For evaluation, we introduce BABEL-Grounding, the first text-motion dataset that provides detailed textual descriptions of human actions along with their corresponding temporal segments.
arXiv Detail & Related papers (2024-04-17T13:33:09Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
We introduce a learning-based method for generating high-quality human motion sequences from text descriptions.
Existing techniques struggle with motion diversity and smooth transitions in generating arbitrary-length motion sequences.
We develop a network encoder that converts the motion space into a compact yet expressive parameterized phase space.
arXiv Detail & Related papers (2023-12-07T04:39:22Z) - SemanticBoost: Elevating Motion Generation with Augmented Textual Cues [73.83255805408126]
Our framework comprises a Semantic Enhancement module and a Context-Attuned Motion Denoiser (CAMD)
The CAMD approach provides an all-encompassing solution for generating high-quality, semantically consistent motion sequences.
Our experimental results demonstrate that SemanticBoost, as a diffusion-based method, outperforms auto-regressive-based techniques.
arXiv Detail & Related papers (2023-10-31T09:58:11Z) - Guided Attention for Interpretable Motion Captioning [0.0]
We introduce a novel architecture that enhances text generation quality by emphasizing interpretability.
To encourage human-like reasoning, we propose methods for guiding attention during training.
We leverage interpretability to derive fine-grained information about human motion.
arXiv Detail & Related papers (2023-10-11T09:14:30Z) - MotionGPT: Human Motion as a Foreign Language [47.21648303282788]
Human motion displays a semantic coupling akin to human language, often perceived as a form of body language.
By fusing language data with large-scale motion models, motion-language pre-training can enhance the performance of motion-related tasks.
We propose MotionGPT, a unified, versatile, and user-friendly motion-language model to handle multiple motion-relevant tasks.
arXiv Detail & Related papers (2023-06-26T15:53:02Z) - Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion
Data and Natural Language [4.86658723641864]
We propose a novel text-to-motion retrieval task, which aims at retrieving relevant motions based on a specified natural description.
Inspired by the recent progress in text-to-image/video matching, we experiment with two widely-adopted metric-learning loss functions.
arXiv Detail & Related papers (2023-05-25T08:32:41Z) - TEACH: Temporal Action Composition for 3D Humans [50.97135662063117]
Given a series of natural language descriptions, our task is to generate 3D human motions that correspond semantically to the text.
In particular, our goal is to enable the synthesis of a series of actions, which we refer to as temporal action composition.
arXiv Detail & Related papers (2022-09-09T00:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.