Planning in a recurrent neural network that plays Sokoban
- URL: http://arxiv.org/abs/2407.15421v3
- Date: Fri, 30 May 2025 00:08:56 GMT
- Title: Planning in a recurrent neural network that plays Sokoban
- Authors: Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker, Adam Gleave, AdriĆ Garriga-Alonso,
- Abstract summary: We analyze a recurrent neural network (RNN) trained on Sokoban, a puzzle requiring sequential, irreversible decisions.<n>We find that the RNN has a causal plan representation which predicts its future actions about 50 steps in advance.<n>We extend the trained RNN to significantly larger, out-of-distribution Sokoban puzzles, demonstrating robust representations beyond the training regime.
- Score: 6.059513516334741
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Planning is essential for solving complex tasks, yet the internal mechanisms underlying planning in neural networks remain poorly understood. Building on prior work, we analyze a recurrent neural network (RNN) trained on Sokoban, a challenging puzzle requiring sequential, irreversible decisions. We find that the RNN has a causal plan representation which predicts its future actions about 50 steps in advance. The quality and length of the represented plan increases over the first few steps. We uncover a surprising behavior: the RNN "paces" in cycles to give itself extra computation at the start of a level, and show that this behavior is incentivized by training. Leveraging these insights, we extend the trained RNN to significantly larger, out-of-distribution Sokoban puzzles, demonstrating robust representations beyond the training regime. We open-source our model and code, and believe the neural network's interesting behavior makes it an excellent model organism to deepen our understanding of learned planning.
Related papers
- Algorithm Development in Neural Networks: Insights from the Streaming Parity Task [8.188549368578704]
We study the learning dynamics of neural networks trained on a streaming parity task.<n>We show that, with sufficient finite training experience, RNNs exhibit a phase transition to perfect infinite generalization.<n>Our results disclose one mechanism by which neural networks can generalize infinitely from finite training experience.
arXiv Detail & Related papers (2025-07-14T04:07:43Z) - RelChaNet: Neural Network Feature Selection using Relative Change Scores [0.0]
We introduce RelChaNet, a novel and lightweight feature selection algorithm that uses neuron pruning and regrowth in the input layer of a dense neural network.
Our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy by 2% on the MNIST dataset.
arXiv Detail & Related papers (2024-10-03T09:56:39Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - From "What" to "When" -- a Spiking Neural Network Predicting Rare Events
and Time to their Occurrence [0.0]
This research paper presents a novel approach to learning the corresponding predictive model by an SNN consisting of leaky integrate-and-fire (LIF) neurons.
The proposed method leverages specially designed local synaptic plasticity rules and a novel columnar-layered SNN architecture.
It was demonstrated that the SNN described in this paper gives superior prediction accuracy in comparison with precise machine learning techniques.
arXiv Detail & Related papers (2023-11-09T08:47:23Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Models Developed for Spiking Neural Networks [0.5801044612920815]
Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain.
In this work, we reviewed the structures and performances of SNNs on image classification tasks.
The comparisons illustrate that these networks show great capabilities for more complicated problems.
arXiv Detail & Related papers (2022-12-08T16:18:53Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Can deep neural networks learn process model structure? An assessment
framework and analysis [0.2580765958706854]
We propose an evaluation scheme complemented with new fitness, precision, and generalisation metrics.
We apply this framework to several process models with simple control-flow behaviour.
Our results show that, even for such simplistic models, careful tuning of overfitting countermeasures is required.
arXiv Detail & Related papers (2022-02-24T09:44:13Z) - Training Quantized Deep Neural Networks via Cooperative Coevolution [27.967480639403796]
We propose a new method for quantizing deep neural networks (DNNs)
Under the framework of cooperative coevolution, we use the estimation of distribution algorithm to search for the low-bits weights.
Experiments show that our method can train 4 bit ResNet-20 on the Cifar-10 dataset without sacrificing accuracy.
arXiv Detail & Related papers (2021-12-23T09:13:13Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Learning and Generalization in RNNs [11.107204912245841]
We prove that simple recurrent neural networks can learn functions of sequences.
New ideas enable us to extract information from the hidden state of the RNN in our proofs.
arXiv Detail & Related papers (2021-05-31T18:27:51Z) - Extending Answer Set Programs with Neural Networks [2.512827436728378]
We propose NeurASP -- a simple extension of answer set programs by embracing neural networks.
We show that NeurASP can not only improve the perception accuracy of a pre-trained neural network, but also help to train a neural network better by giving restrictions through logic rules.
arXiv Detail & Related papers (2020-09-22T00:52:30Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure.
In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli.
arXiv Detail & Related papers (2019-06-03T21:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.