Models Developed for Spiking Neural Networks
- URL: http://arxiv.org/abs/2212.04377v1
- Date: Thu, 8 Dec 2022 16:18:53 GMT
- Title: Models Developed for Spiking Neural Networks
- Authors: Shahriar Rezghi Shirsavar, Abdol-Hossein Vahabie, Mohammad-Reza A.
Dehaqani
- Abstract summary: Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain.
In this work, we reviewed the structures and performances of SNNs on image classification tasks.
The comparisons illustrate that these networks show great capabilities for more complicated problems.
- Score: 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emergence of deep neural networks (DNNs) has raised enormous attention
towards artificial neural networks (ANNs) once again. They have become the
state-of-the-art models and have won different machine learning challenges.
Although these networks are inspired by the brain, they lack biological
plausibility, and they have structural differences compared to the brain.
Spiking neural networks (SNNs) have been around for a long time, and they have
been investigated to understand the dynamics of the brain. However, their
application in real-world and complicated machine learning tasks were limited.
Recently, they have shown great potential in solving such tasks. Due to their
energy efficiency and temporal dynamics there are many promises in their future
development. In this work, we reviewed the structures and performances of SNNs
on image classification tasks. The comparisons illustrate that these networks
show great capabilities for more complicated problems. Furthermore, the simple
learning rules developed for SNNs, such as STDP and R-STDP, can be a potential
alternative to replace the backpropagation algorithm used in DNNs.
Related papers
- A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties.
In SNN, communication between neurons takes place through the spikes and spike trains.
SNPS can be considered a branch of SNN based more on the principles of formal automata.
arXiv Detail & Related papers (2024-03-27T14:26:41Z) - Curriculum Design Helps Spiking Neural Networks to Classify Time Series [16.402675046686834]
Spiking Neural Networks (SNNs) have a greater potential for modeling time series data than Artificial Neural Networks (ANNs)
In this work, enlighten by brain-inspired science, we find that, not only the structure but also the learning process should be human-like.
arXiv Detail & Related papers (2023-12-26T02:04:53Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Is it conceivable that neurogenesis, neural Darwinism, and species
evolution could all serve as inspiration for the creation of evolutionary
deep neural networks? [0.0]
Deep Neural Networks (DNNs) are built using artificial neural networks.
This paper emphasizes the importance of what we call two-dimensional brain evolution.
We also highlight the connection between the dropout method which is widely-used in regularizing DNNs and neurogenesis of the brain.
arXiv Detail & Related papers (2023-04-06T14:51:20Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
Spiking Neural Networks (SNNs) have attracted the attention of the deep learning community for use in low-latency, low-power neuromorphic hardware.
In this paper, we introduce Spiking Phasor Neural Networks (SPNNs)
SPNNs are based on complex-valued Deep Neural Networks (DNNs), representing phases by spike times.
arXiv Detail & Related papers (2022-04-01T15:06:15Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention owing to their low power consumption.
We build versatile hybrid neural networks (HNNs) that improve the concerned performance.
arXiv Detail & Related papers (2021-02-21T12:03:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.