論文の概要: Score matching for bridges without time-reversals
- arxiv url: http://arxiv.org/abs/2407.15455v2
- Date: Tue, 23 Jul 2024 09:25:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 11:59:35.511672
- Title: Score matching for bridges without time-reversals
- Title(参考訳): 時間反転のない橋のスコアマッチング
- Authors: Elizabeth L. Baker, Moritz Schauer, Stefan Sommer,
- Abstract要約: スコアマッチング手法を用いてブリッジ拡散過程を学習するための新しいアルゴリズムを提案する。
本手法は,前処理のダイナミクスを逆転させ,これを用いてスコア関数を学習することに依存する。
従来の方法とは対照的に、我々はスコア項 $nabla_x log p(t, x; T, y)$, for given $t, Y$ を直接学習する。
- 参考スコア(独自算出の注目度): 3.072340427031969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new algorithm for learning a bridged diffusion process using score-matching methods. Our method relies on reversing the dynamics of the forward process and using this to learn a score function, which, via Doob's $h$-transform, gives us a bridged diffusion process; that is, a process conditioned on an endpoint. In contrast to prior methods, ours learns the score term $\nabla_x \log p(t, x; T, y)$, for given $t, Y$ directly, completely avoiding the need for first learning a time reversal. We compare the performance of our algorithm with existing methods and see that it outperforms using the (learned) time-reversals to learn the score term. The code can be found at https://github.com/libbylbaker/forward_bridge.
- Abstract(参考訳): スコアマッチング手法を用いてブリッジ拡散過程を学習するための新しいアルゴリズムを提案する。
提案手法は前処理のダイナミクスを逆転させてスコア関数を学習することで,Doobの$h$-transformを通じて,エンドポイント上で条件付けられたプロセスであるブリッジ拡散プロセスを提供する。
従来の方法とは対照的に、我々はスコア項 $\nabla_x \log p(t, x; T, y)$, for given $t, Y$ を直接学習し、時間逆転を初めて学習する必要を完全に回避する。
アルゴリズムの性能を既存の手法と比較し、(学習した)時間反転を用いてスコア項を学習することで性能が向上することを示す。
コードはhttps://github.com/libbylbaker/forward_bridgeで見ることができる。
関連論文リスト
- Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows [2.048226951354646]
非可逆的畳み込みの逆は、正規化フローで現れる重要な操作である。
正方形画像に対して,動作時間$O(sqrtn)$の高速並列バックプロパゲーションアルゴリズムを提案する。
従来のモデルと比較して,次元毎に類似したビットでサンプリング時間を大幅に改善した。
論文 参考訳(メタデータ) (2024-10-18T17:35:33Z) - DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion [137.8749239614528]
そこで我々は,時間的行動検出(TAD)の新しい定式化を提案し,拡散を抑えるDiffTADを提案する。
入力されたランダムな時間的提案を考慮すれば、トリミングされていない長いビデオが与えられたアクションの提案を正確に得ることができる。
論文 参考訳(メタデータ) (2023-03-27T00:40:52Z) - Fast Differentiable Matrix Square Root and Inverse Square Root [65.67315418971688]
微分可能な行列平方根と逆平方根を計算するためのより効率的な2つの変種を提案する。
前方伝搬には, Matrix Taylor Polynomial (MTP) を用いる方法と, Matrix Pad'e Approximants (MPA) を使用する方法がある。
一連の数値実験により、両方の手法がSVDやNSの繰り返しと比較してかなりスピードアップすることが示された。
論文 参考訳(メタデータ) (2022-01-29T10:00:35Z) - Fast Differentiable Matrix Square Root [65.67315418971688]
微分可能な行列平方根を計算するために、より効率的な2つの変種を提案する。
前方伝播には, Matrix Taylor Polynomial (MTP) を用いる方法がある。
もう1つの方法は Matrix Pad'e Approximants (MPA) を使うことである。
論文 参考訳(メタデータ) (2022-01-21T12:18:06Z) - A Fast and Accurate Splitting Method for Optimal Transport: Analysis and
Implementation [19.6590956326761]
我々は,高速かつ信頼性の高い大規模最適輸送(OT)問題を,前例のない速度と精度の組み合わせで解く方法を開発した。
ダグラス・ラフフォード分割法に基づいて構築され、近似正規化問題を解く代わりに、元のOT問題に直接取り組んだ。
論文 参考訳(メタデータ) (2021-10-22T12:16:08Z) - Scalable Online Recurrent Learning Using Columnar Neural Networks [35.584855852204385]
RTRLと呼ばれるアルゴリズムは、オンラインのリカレントネットワークの勾配を計算できるが、大規模なネットワークでは計算が困難である。
我々は,O(n)$演算とステップ毎のメモリを用いて,リアルタイムに繰り返し学習の勾配を近似するクレジット割り当てアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-09T23:45:13Z) - Improved Regret Bound and Experience Replay in Regularized Policy
Iteration [22.621710838468097]
無限ホライゾンマルコフ決定過程(mdps)における学習アルゴリズムを関数近似を用いて検討する。
まず、ほぼ同一の仮定の下で、Politexアルゴリズムの後悔解析を$O(T3/4)$から$O(sqrtT)$にシャープできることを示す。
その結果、計算効率の良いアルゴリズムに対して、最初の高い確率の$o(sqrtt)$ regretバウンドが得られる。
論文 参考訳(メタデータ) (2021-02-25T00:55:07Z) - Second-order Neural Network Training Using Complex-step Directional
Derivative [41.4333906662624]
本稿では,2次ニューラルネットワークトレーニングのための数値アルゴリズムを提案する。
複素ステップ有限差分を用いてヘッセン計算の実践的障害に取り組む。
提案手法は,ディープラーニングと数値最適化のための新しいアルゴリズムを広範囲に導入すると考えられる。
論文 参考訳(メタデータ) (2020-09-15T13:46:57Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
我々は、よく知られたOFULアルゴリズムの正規化バージョンを実装するバンディットアルゴリズムのクラスを考える。
我々は,タスク数の増加とタスク分散の分散が小さくなると,タスクを個別に学習する上で,我々の戦略が大きな優位性を持つことを理論的および実験的に示す。
論文 参考訳(メタデータ) (2020-05-18T08:41:39Z) - Almost Optimal Model-Free Reinforcement Learning via Reference-Advantage
Decomposition [59.34067736545355]
有限水平型マルコフ決定過程(MDP)における強化学習問題を,S$状態,A$動作,エピソード長$H$を用いて検討した。
モデルフリーアルゴリズム UCB-Advantage を提案し、$T = KH$ および $K$ が再生すべきエピソード数である場合に $tildeO(sqrtH2SAT)$ regret を達成することを証明した。
論文 参考訳(メタデータ) (2020-04-21T14:00:06Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
メタトレーニングセット上で教師付きあるいは自己教師型表現を学習する単純なベースラインが、最先端の数ショット学習方法より優れていることを示す。
追加の増量は自己蒸留によって達成できる。
我々は,この発見が,画像分類ベンチマークとメタ学習アルゴリズムの役割を再考する動機となっていると考えている。
論文 参考訳(メタデータ) (2020-03-25T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。