論文の概要: Diverse Image Harmonization
- arxiv url: http://arxiv.org/abs/2407.15481v1
- Date: Mon, 22 Jul 2024 08:51:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-23 15:40:55.024826
- Title: Diverse Image Harmonization
- Title(参考訳): 広帯域画像の高調波化
- Authors: Xinhao Tao, Tianyuan Qiu, Junyan Cao, Li Niu,
- Abstract要約: 本研究では, 地中反射率の誘導により, 高い性能が得られる反射率誘導型ハーモニゼーションネットワークを提案する。
また,様々な反射率生成ネットワークを設計し,複数の可塑性前景反射率を予測し,複数の可塑性高調波化結果を得る。
- 参考スコア(独自算出の注目度): 17.292752475113595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image harmonization aims to adjust the foreground illumination in a composite image to make it harmonious. The existing harmonization methods can only produce one deterministic result for a composite image, ignoring that a composite image could have multiple plausible harmonization results due to multiple plausible reflectances. In this work, we first propose a reflectance-guided harmonization network, which can achieve better performance with the guidance of ground-truth foreground reflectance. Then, we also design a diverse reflectance generation network to predict multiple plausible foreground reflectances, leading to multiple plausible harmonization results. The extensive experiments on the benchmark datasets demonstrate the effectiveness of our method.
- Abstract(参考訳): 画像調和は、合成画像の前景照明を調整して調和させることを目的としている。
既存のハーモニゼーション法は合成画像に対して1つの決定論的結果しか生成できず、合成画像は複数の可塑性反射により複数の可塑性調和結果が得られることを無視する。
本研究では,まず,地表面の反射率の誘導により,より優れた性能が得られる反射率誘導型ハーモニゼーションネットワークを提案する。
また、複数の可塑性前景反射率を予測するための多様な反射率生成ネットワークを設計し、複数の可塑性調和結果を得る。
ベンチマークデータセットの広範な実験により,本手法の有効性が示された。
関連論文リスト
- Dereflection Any Image with Diffusion Priors and Diversified Data [86.15504914121226]
本稿では、効率的なデータ準備パイプラインと、頑健な反射除去のための一般化可能なモデルを備えた包括的解を提案する。
まず、ターゲットシーンでランダムに回転する反射媒体によって生成された横反射除去(DRR)というデータセットを紹介する。
第2に、決定論的出力と高速推論のための1ステップ拡散を伴う拡散に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-21T17:48:14Z) - DiffHarmony: Latent Diffusion Model Meets Image Harmonization [11.500358677234939]
拡散モデルは画像から画像への翻訳タスクの迅速な開発を促進する。
スクラッチからの微調整事前学習潜伏拡散モデルは計算集約的である。
本稿では,事前学習した潜伏拡散モデルを画像調和タスクに適用し,調和性はあるが曖昧な初期画像を生成する。
論文 参考訳(メタデータ) (2024-04-09T09:05:23Z) - Diffusion Reflectance Map: Single-Image Stochastic Inverse Rendering of Illumination and Reflectance [19.20790327389337]
反射は、物体の外観における照明の周波数スペクトルを束縛する。
本稿では,照明の減衰周波数スペクトルを既知の幾何の物体の反射率とともに復元する第1逆レンダリング法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:50:00Z) - Intrinsic Harmonization for Illumination-Aware Compositing [0.7366405857677227]
固有画像領域で定式化された自己教師付き照明調和方式を提案する。
まず、中間レベルの視覚表現から簡単な大域照明モデルを推定し、前景領域の粗いシェーディングを生成する。
ネットワークはこの推論シェーディングを洗練し、背景のシーンと整合する再シェーディングを生成する。
論文 参考訳(メタデータ) (2023-12-06T18:59:03Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
画像からシーン特性を推定する逆レンダリングは、困難な逆問題である。
既存のソリューションの多くは、プリエントを逆レンダリングパイプラインに組み込んで、プラウシブルなソリューションを奨励している。
本稿では,自然照明マップ上で事前学習した確率拡散モデルを最適化フレームワークに統合する手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T12:39:28Z) - Zero-Shot Image Harmonization with Generative Model Prior [22.984119094424056]
画像調和のためのゼロショットアプローチを提案し, 大量の合成合成画像への依存を克服することを目的とした。
人間の振る舞いにインスパイアされた、完全にモジュール化されたフレームワークを導入します。
さまざまなシーンやオブジェクトにまたがる説得力のある視覚的結果と、アプローチを検証するユーザスタディを提示します。
論文 参考訳(メタデータ) (2023-07-17T00:56:21Z) - Image Harmonization with Region-wise Contrastive Learning [51.309905690367835]
本稿では,外部スタイルの融合と領域単位のコントラスト学習方式を備えた新しい画像調和フレームワークを提案する。
提案手法は, 前景と背景の相互情報を最大化することにより, 対応する正と負のサンプルをまとめることを試みる。
論文 参考訳(メタデータ) (2022-05-27T15:46:55Z) - SSH: A Self-Supervised Framework for Image Harmonization [97.16345684998788]
我々は、編集せずに「自由」な自然画像だけで訓練できる新しい自己改善調和フレームワーク(SSH)を提案する。
提案したSSHは,基準指標,視覚的品質,主観的ユーザスタディにおいて,従来の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-08-15T19:51:33Z) - Enhancing Photorealism Enhancement [83.88433283714461]
本稿では,畳み込みネットワークを用いた合成画像のリアリズム向上手法を提案する。
一般的に使用されるデータセットのシーンレイアウトの分布を分析し、重要な方法で異なることを見つけます。
近年のイメージ・ツー・イメージ翻訳法と比較して,安定性とリアリズムの大幅な向上が報告されている。
論文 参考訳(メタデータ) (2021-05-10T19:00:49Z) - Information-based Disentangled Representation Learning for Unsupervised
MR Harmonization [8.170262034101688]
精度と一貫性は、コンピュータ支援磁気共鳴(MR)画像解析における2つの重要な要素です。
MR取得における標準化の欠如に起因する部位間のコントラストの変化は、一貫した測定を妨げます。
CalAMITIは、移動対象を必要とせず、多地点調和のための統一構造を用いて、非絡み合いの潜在空間を学習する。
論文 参考訳(メタデータ) (2021-03-24T15:54:27Z) - Adversarial Image Composition with Auxiliary Illumination [53.89445873577062]
本稿では,現実的な画像合成を実現するためのAIC-Netを提案する。
影の発生と前景の移動を両立させる新しい分岐生成機構を提案する。
歩行者と自動車のコンポジションタスクに関する実験により,提案したAIC-Netが優れたコンポジション性能を実現することを示す。
論文 参考訳(メタデータ) (2020-09-17T12:58:16Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
野生の偏光画像からの反射を除去するための新しい定式化法を提案する。
まず、既存のリフレクション除去データセットの不整合問題を同定する。
我々は100種類以上のガラスを用いた新しいデータセットを構築し、得られた透過画像は入力された混合画像と完全に一致している。
論文 参考訳(メタデータ) (2020-03-28T13:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。