論文の概要: DiffX: Guide Your Layout to Cross-Modal Generative Modeling
- arxiv url: http://arxiv.org/abs/2407.15488v5
- Date: Sun, 20 Oct 2024 15:41:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:56:37.622724
- Title: DiffX: Guide Your Layout to Cross-Modal Generative Modeling
- Title(参考訳): DiffX: クロスモーダルな生成モデルにレイアウトをガイドする
- Authors: Zeyu Wang, Jingyu Lin, Yifei Qian, Yi Huang, Shicen Tian, Bosong Chai, Juncan Deng, Qu Yang, Lan Du, Cunjian Chen, Kejie Huang,
- Abstract要約: DiffXと呼ばれる一般的なレイアウト誘導型クロスモーダル生成のための新しい拡散モデルを提案する。
我々のDiffXは、拡散・復調処理を行う、コンパクトで効果的なクロスモーダル生成モデリングパイプラインを提供する。
我々の知る限り、DiffXはレイアウト誘導型クロスモーダル画像生成の最初のモデルである。
- 参考スコア(独自算出の注目度): 12.217979042526474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have made significant strides in language-driven and layout-driven image generation. However, most diffusion models are limited to visible RGB image generation. In fact, human perception of the world is enriched by diverse viewpoints, such as chromatic contrast, thermal illumination, and depth information. In this paper, we introduce a novel diffusion model for general layout-guided cross-modal generation, called DiffX. Notably, our DiffX presents a compact and effective cross-modal generative modeling pipeline, which conducts diffusion and denoising processes in the modality-shared latent space. Moreover, we introduce the Joint-Modality Embedder (JME) to enhance the interaction between layout and text conditions by incorporating a gated attention mechanism. To facilitate the user-instructed training, we construct the cross-modal image datasets with detailed text captions by the Large-Multimodal Model (LMM) and our human-in-the-loop refinement. Through extensive experiments, our DiffX demonstrates robustness in cross-modal ''RGB+X'' image generation on FLIR, MFNet, and COME15K datasets, guided by various layout conditions. Meanwhile, it shows the strong potential for the adaptive generation of ``RGB+X+Y(+Z)'' images or more diverse modalities on FLIR, MFNet, COME15K, and MCXFace datasets. To our knowledge, DiffX is the first model for layout-guided cross-modal image generation. Our code and constructed cross-modal image datasets are available at https://github.com/zeyuwang-zju/DiffX.
- Abstract(参考訳): 拡散モデルは言語駆動とレイアウト駆動の画像生成において大きな進歩を遂げている。
しかし、ほとんどの拡散モデルは可視RGB画像生成に限られている。
実際、世界の人間の知覚は、色調コントラスト、熱照明、深度情報といった様々な視点によって豊かになっている。
本稿では,DiffXと呼ばれる一般レイアウト誘導型クロスモーダル生成のための新しい拡散モデルを提案する。
特に、我々のDiffXはコンパクトで効果的なクロスモーダル生成モデリングパイプラインを示し、モダリティ共有潜在空間における拡散および偏極過程を実行する。
さらに,JME(Joint-Modality Embedder)を導入し,アテンション機構を組み込むことで,レイアウトとテキスト条件の相互作用を強化する。
ユーザによる学習を容易にするために,LMM(Large-Multimodal Model)による詳細なテキストキャプションと,ループ内改良による画像データセットを構築した。
我々のDiffXは、広範囲にわたる実験を通じて、FLIR、MFNet、COME15Kデータセット上のクロスモーダルな'RGB+X'画像生成において、様々なレイアウト条件でガイドされる堅牢性を示す。
一方, FLIR, MFNet, COME15K, MCXFaceデータセット上での ``RGB+X+Y(+Z)'' 画像の適応生成や, より多様なモダリティの強い可能性を示す。
我々の知る限り、DiffXはレイアウト誘導型クロスモーダル画像生成の最初のモデルである。
私たちのコードとクロスモーダルなイメージデータセットはhttps://github.com/zeyuwang-zju/DiffX.comで公開されています。
関連論文リスト
- X-Drive: Cross-modality consistent multi-sensor data synthesis for driving scenarios [105.16073169351299]
本稿では,点雲と多視点画像の連成分布をモデル化する新しいフレームワーク,X-DRIVEを提案する。
2つのモダリティの異なる幾何学的空間を考えると、X-DRIVE条件は対応する局所領域上の各モダリティの合成である。
X-DRIVEはテキスト、バウンディングボックス、画像、点雲を含む多レベル入力条件を通じて制御可能な生成を可能にする。
論文 参考訳(メタデータ) (2024-11-02T03:52:12Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - Diff-Mosaic: Augmenting Realistic Representations in Infrared Small Target Detection via Diffusion Prior [63.64088590653005]
本稿では拡散モデルに基づくデータ拡張手法であるDiff-Mosaicを提案する。
我々は,モザイク画像を高度に調整し,リアルな画像を生成するPixel-Priorという拡張ネットワークを導入する。
第2段階では,Diff-Prior という画像強調戦略を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:23:05Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
我々は,閉鎖語彙データセットのトレーニングモデルによって伝統的に解決されるイメージセグメンテーションの課題に焦点をあてる。
我々は、ゼロショットのオープン語彙セグメンテーションのために、異なる、比較的小さなオープンソース基盤モデルを活用している。
当社のアプローチ(別名FreeSeg-Diff)は、トレーニングに依存しないもので、Pascal VOCとCOCOデータセットの両方で多くのトレーニングベースのアプローチより優れています。
論文 参考訳(メタデータ) (2024-03-29T10:38:25Z) - ToddlerDiffusion: Interactive Structured Image Generation with Cascaded Schrödinger Bridge [63.00793292863]
ToddlerDiffusionは、RGB画像生成の複雑なタスクを、よりシンプルで解釈可能なステージに分解するための新しいアプローチである。
提案手法はToddler Diffusionと呼ばれ,それぞれが中間表現を生成する責務を担っている。
ToddlerDiffusionは、常に最先端のメソッドより優れています。
論文 参考訳(メタデータ) (2023-11-24T15:20:01Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
本稿では,拡散過程下での1つのフレームワークに,モダクティブと差別的事前学習を統一するDiffDisを提案する。
DiffDisは画像生成タスクと画像テキスト識別タスクの両方において単一タスクモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T05:03:48Z) - LayoutDiffuse: Adapting Foundational Diffusion Models for
Layout-to-Image Generation [24.694298869398033]
提案手法は,高い知覚品質とレイアウトアライメントの両面から画像を生成し,効率よく訓練する。
提案手法は, GAN, VQ-VAE, 拡散モデルに基づく他の10種類の生成モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-02-16T14:20:25Z) - Improving Cross-modal Alignment for Text-Guided Image Inpainting [36.1319565907582]
テキスト誘導画像塗装(TGII)は、損傷した画像中の与えられたテキストに基づいて、行方不明領域を復元することを目的としている。
クロスモーダルアライメントを改善することで,TGIIの新たなモデルを提案する。
我々のモデルは、他の強力な競合相手と比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-01-26T19:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。