Towards an Engineering Discipline for Resilient Cyber-Physical Systems
- URL: http://arxiv.org/abs/2407.15562v1
- Date: Mon, 22 Jul 2024 11:50:01 GMT
- Title: Towards an Engineering Discipline for Resilient Cyber-Physical Systems
- Authors: Ricardo D. Caldas,
- Abstract summary: The term resilience refers to the ability to cope with unexpected inputs while delivering correct service.
My thesis aims to pioneer an engineering discipline for resilient cyber-physical systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resilient cyber-physical systems comprise computing systems able to continuously interact with the physical environment in which they operate, despite runtime errors. The term resilience refers to the ability to cope with unexpected inputs while delivering correct service. Examples of resilient computing systems are Google's PageRank and the Bubblesort algorithm. Engineering for resilient cyber-physical systems requires a paradigm shift, prioritizing adaptability to dynamic environments. Software as a tool for self-management is a key instrument for dealing with uncertainty and embedding resilience in these systems. Yet, software engineers encounter the ongoing challenge of ensuring resilience despite environmental dynamic change. My thesis aims to pioneer an engineering discipline for resilient cyber-physical systems. Over four years, we conducted studies, built methods and tools, delivered software packages, and a website offering guidance to practitioners. This paper provides a condensed overview of the problems tackled, our methodology, key contributions, and results highlights. Seeking feedback from the community, this paper serves both as preparation for the thesis defense and as insight into future research prospects.
Related papers
- A Roadmap for Simulation-Based Testing of Autonomous Cyber-Physical Systems: Challenges and Future Direction [5.742965094549775]
This paper pioneers a strategic roadmap for simulation-based testing of autonomous systems.
Our paper discusses the relevant challenges and obstacles of ACPSs, focusing on test automation and quality assurance.
arXiv Detail & Related papers (2024-05-02T07:42:33Z) - Towards Automated Generation of Smart Grid Cyber Range for Cybersecurity Experiments and Training [8.492135678037787]
We have developed a framework for modelling a smart grid cyber range using an XML-based language, called SG-ML.
The framework aims at making a smart grid cyber range available to broader user bases to facilitate cybersecurity R&D and hands-on exercises.
arXiv Detail & Related papers (2024-04-01T02:34:53Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Green Resilience of Cyber-Physical Systems [0.0]
Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services.
The need for a recovery technique is highly needed to achieve resilience in the system.
This proposal suggests a game theory solution to achieve resilience and green in CPS.
arXiv Detail & Related papers (2023-11-09T08:29:55Z) - Physics-Based Task Generation through Causal Sequence of Physical
Interactions [3.2244944291325996]
Performing tasks in a physical environment is a crucial yet challenging problem for AI systems operating in the real world.
We present a systematic approach for defining a physical scenario using a causal sequence of physical interactions between objects.
We then propose a methodology for generating tasks in a physics-simulating environment using defined scenarios as inputs.
arXiv Detail & Related papers (2023-08-05T10:15:18Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
We argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums.
We outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems.
We expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.
arXiv Detail & Related papers (2022-08-17T23:03:54Z) - Introduction to the Artificial Intelligence that can be applied to the
Network Automation Journey [68.8204255655161]
The "Intent-Based Networking - Concepts and Definitions" document describes the different parts of the ecosystem that could be involved in NetDevOps.
The recognize, generate intent, translate and refine features need a new way to implement algorithms.
arXiv Detail & Related papers (2022-04-02T08:12:08Z) - Beyond Robustness: A Taxonomy of Approaches towards Resilient
Multi-Robot Systems [41.71459547415086]
We analyze how resilience is achieved in networks of agents and multi-robot systems.
We argue that resilience must become a central engineering design consideration.
arXiv Detail & Related papers (2021-09-25T11:25:02Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.