Towards Automated Generation of Smart Grid Cyber Range for Cybersecurity Experiments and Training
- URL: http://arxiv.org/abs/2404.00869v1
- Date: Mon, 1 Apr 2024 02:34:53 GMT
- Title: Towards Automated Generation of Smart Grid Cyber Range for Cybersecurity Experiments and Training
- Authors: Daisuke Mashima, Muhammad M. Roomi, Bennet Ng, Zbigniew Kalbarczyk, S. M. Suhail Hussain, Ee-chien Chang,
- Abstract summary: We have developed a framework for modelling a smart grid cyber range using an XML-based language, called SG-ML.
The framework aims at making a smart grid cyber range available to broader user bases to facilitate cybersecurity R&D and hands-on exercises.
- Score: 8.492135678037787
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Assurance of cybersecurity is crucial to ensure dependability and resilience of smart power grid systems. In order to evaluate the impact of potential cyber attacks, to assess deployability and effectiveness of cybersecurity measures, and to enable hands-on exercise and training of personals, an interactive, virtual environment that emulates the behaviour of a smart grid system, namely smart grid cyber range, has been demanded by industry players as well as academia. A smart grid cyber range is typically implemented as a combination of cyber system emulation, which allows interactivity, and physical system (i.e., power grid) simulation that are tightly coupled for consistent cyber and physical behaviours. However, its design and implementation require intensive expertise and efforts in cyber and physical aspects of smart power systems as well as software/system engineering. While many industry players, including power grid operators, device vendors, research and education sectors are interested, availability of the smart grid cyber range is limited to a small number of research labs. To address this challenge, we have developed a framework for modelling a smart grid cyber range using an XML-based language, called SG-ML, and for "compiling" the model into an operational cyber range with minimal engineering efforts. The modelling language includes standardized schema from IEC 61850 and IEC 61131, which allows industry players to utilize their existing configurations. The SG-ML framework aims at making a smart grid cyber range available to broader user bases to facilitate cybersecurity R\&D and hands-on exercises.
Related papers
- A cyber-physical digital twin approach to replicating realistic multi-stage cyberattacks on smart grids [2.479074862022315]
This paper examines the impact of cyberattacks on smart grids by replicating the power grid in a secure laboratory environment.
A simulation is used to study communication infrastructures for secure operation of smart grids.
arXiv Detail & Related papers (2024-12-06T09:58:51Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.
We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.
Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - Threat analysis and adversarial model for Smart Grids [1.7482569079741024]
The cyber domain of this smart power grid opens a new plethora of threats.
Different stakeholders including regulation bodies, industry and academy are making efforts to provide security mechanisms to mitigate and reduce cyber-risks.
Recent work shows a lack of agreement among grid practitioners and academic experts on the feasibility and consequences of academic-proposed threats.
This is in part due to inadequate simulation models which do not evaluate threats based on attackers full capabilities and goals.
arXiv Detail & Related papers (2024-06-17T16:33:46Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
Smart grid systems are critical to the power industry, however their sophisticated architectural design and operations expose them to a number of cybersecurity threats.
Artificial Intelligence (AI)-based technologies are becoming increasingly popular for detecting cyber assaults in a variety of computer settings.
The present AI systems are being exposed and vanquished because of the recent emergence of sophisticated adversarial systems such as Generative Adversarial Networks (GAN)
arXiv Detail & Related papers (2022-02-14T21:41:36Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
Smart grid (SG) is a complex cyber-physical system that utilizes modern cyber and physical equipment to run at an optimal operating point.
Cyberattacks are the principal threats confronting the usage and advancement of the state-of-the-art systems.
Machine learning (ML) is being used to exploit and defend the cyberattacks in SG by the attackers and system operators.
arXiv Detail & Related papers (2020-09-01T05:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.