論文の概要: Can GPT-4 learn to analyze moves in research article abstracts?
- arxiv url: http://arxiv.org/abs/2407.15612v2
- Date: Wed, 24 Jul 2024 21:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:18:09.009301
- Title: Can GPT-4 learn to analyze moves in research article abstracts?
- Title(参考訳): GPT-4は研究論文の要約における動きを学習できるか?
- Authors: Danni Yu, Marina Bondi, Ken Hyland,
- Abstract要約: 我々は、自然言語のプロンプトを用いてアノテーションプロセスを自動化するため、GPT-4の余裕を生かしている。
8ショットのプロンプトは2つを用いた場合よりも有効であり、可変性の領域を示す例を含めることで、単一の文で複数の動きを認識できるGPT-4の能力を高めることが確認された。
- 参考スコア(独自算出の注目度): 0.9999629695552195
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the most powerful and enduring ideas in written discourse analysis is that genres can be described in terms of the moves which structure a writer's purpose. Considerable research has sought to identify these distinct communicative acts, but analyses have been beset by problems of subjectivity, reliability and the time-consuming need for multiple coders to confirm analyses. In this paper we employ the affordances of GPT-4 to automate the annotation process by using natural language prompts. Focusing on abstracts from articles in four applied linguistics journals, we devise prompts which enable the model to identify moves effectively. The annotated outputs of these prompts were evaluated by two assessors with a third addressing disagreements. The results show that an 8-shot prompt was more effective than one using two, confirming that the inclusion of examples illustrating areas of variability can enhance GPT-4's ability to recognize multiple moves in a single sentence and reduce bias related to textual position. We suggest that GPT-4 offers considerable potential in automating this annotation process, when human actors with domain specific linguistic expertise inform the prompting process.
- Abstract(参考訳): 記述された談話分析において最も強力で永続的な考えの1つは、ジャンルが作家の目的を構成する動きの観点で説明できることである。
重要な研究は、これらの異なるコミュニケーション行為を特定することを目的としているが、分析は主観性、信頼性、そして複数のコーダが分析を確認するのに時間がかかるという問題によって始められた。
本稿では,自然言語のプロンプトを用いてアノテーション処理を自動化するため,GPT-4の余裕を生かした。
応用言語学雑誌4誌の記事の要約に焦点をあてて,モデルが効果的に動きを識別できるプロンプトを考案した。
これらのプロンプトの注釈付き出力は、2つの評価者によって評価され、3番目の不一致に対処した。
その結果、8発のプロンプトは2回より有効であることが示され、可変性の領域を具体化することで、単一の文中の複数の動きを認識でき、テキスト位置に関するバイアスを低減できることが確認された。
我々は,GPT-4がこのアノテーションプロセスの自動化に有意な可能性を示唆する。
関連論文リスト
- PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - GPT Assisted Annotation of Rhetorical and Linguistic Features for Interpretable Propaganda Technique Detection in News Text [1.2699007098398802]
本研究は, 説得の言語に関する文献で同定された22の修辞的, 言語学的特徴を分類した。
WebアプリケーションであるRhetAnnは、そうでなければかなりの精神的な努力を最小限に抑えるように設計されている。
注釈付きデータの小さなセットは、生成的大言語モデル(LLM)であるGPT-3.5を微調整し、残りのデータに注釈を付けた。
論文 参考訳(メタデータ) (2024-07-16T15:15:39Z) - Putting GPT-4o to the Sword: A Comprehensive Evaluation of Language, Vision, Speech, and Multimodal Proficiency [3.161954199291541]
本研究は, GPT-4oの言語, 視覚, 音声, マルチモーダル能力を包括的に評価する。
GPT-4oは、言語と推論能力において、複数のドメインにわたる高い精度と効率を示す。
モデルは可変性を示し、複雑であいまいな入力を扱う際の制限に直面している。
論文 参考訳(メタデータ) (2024-06-19T19:00:21Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Can GPT-4 Support Analysis of Textual Data in Tasks Requiring Highly
Specialized Domain Expertise? [0.8924669503280334]
GPT-4は、アノテーションガイドラインによって誘導され、十分に訓練された法学生のアノテーションと同等に実行される。
ガイドラインでは,GPT-4の予測を解析し,欠陥を識別・緩和する方法を実証した。
論文 参考訳(メタデータ) (2023-06-24T08:48:24Z) - PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts [76.18347405302728]
本研究は、文字、単語、文、意味といった複数のレベルにわたるプロンプトを標的とした、敵対的なテキスト攻撃を多用する。
相手のプロンプトは、感情分析、自然言語推論、読書理解、機械翻訳、数学の問題解決など様々なタスクに使用される。
以上の結果から,現代の大規模言語モデルでは,敵対的プロンプトに対して頑健ではないことが示唆された。
論文 参考訳(メタデータ) (2023-06-07T15:37:00Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - Prompting Large Language Model for Machine Translation: A Case Study [87.88120385000666]
我々は機械翻訳戦略の推進に関する体系的研究を行っている。
本稿では,プロンプトテンプレートと実演例選択の要因について検討する。
本稿では,モノリンガルデータの利用と,クロスリンガル,クロスドメイン,文-文書間伝達学習の実現可能性について検討する。
論文 参考訳(メタデータ) (2023-01-17T18:32:06Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
生成的アプローチは、テキストから(1つ以上の)4つの要素を1つのタスクとして抽出するために提案されている。
本稿では,ABSAを解くための統一的なフレームワークと,それに関連するサブタスクを提案する。
論文 参考訳(メタデータ) (2022-10-12T23:38:57Z) - Polling Latent Opinions: A Method for Computational Sociolinguistics
Using Transformer Language Models [4.874780144224057]
我々は,Yelp レビューのより大きなコーパス内で,トランスフォーマー言語モデルの記憶と外挿の能力を用いて,サブグループの言語的振る舞いを学習する。
トレーニングコーパスに特定のキーワードが制限されたり、全く存在しない場合においても、GPTは正しい感情を持つ大量のテキストを正確に生成できることを示す。
論文 参考訳(メタデータ) (2022-04-15T14:33:58Z) - Automatic Analysis of Linguistic Features in Journal Articles of
Different Academic Impacts with Feature Engineering Techniques [0.975434908987426]
本研究では, 特徴工学的手法を用いて, 高次・中等度な学術誌RAのマイクロレベル言語的特徴の抽出を試みた。
英文記事のコーパスから特徴選択手法を用いて,25の高関連特徴を抽出した。
その結果, 隣接文間の内容語重複, 第三者代名詞の使用, 助動詞, 時制, 感情語など24種類の言語的特徴が, 学術的影響の異なる雑誌記事に対して一貫した, 正確な予測を提供することがわかった。
論文 参考訳(メタデータ) (2021-11-15T03:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。