Sustainable broadcasting in Blockchain Network with Reinforcement Learning
- URL: http://arxiv.org/abs/2407.15616v1
- Date: Mon, 22 Jul 2024 13:24:08 GMT
- Title: Sustainable broadcasting in Blockchain Network with Reinforcement Learning
- Authors: Danila Valko, Daniel Kudenko,
- Abstract summary: Estimates put Bitcoin's carbon footprint at an average of 64 and 26 million tonnes of CO2 per year.
We propose an efficient approach based on reinforcement learning that improves the block broadcasting scheme in blockchain networks.
- Score: 0.5524804393257919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent estimates put the carbon footprint of Bitcoin and Ethereum at an average of 64 and 26 million tonnes of CO2 per year, respectively. To address this growing problem, several possible approaches have been proposed in the literature: creating alternative blockchain consensus mechanisms, applying redundancy reduction techniques, utilizing renewable energy sources, and employing energy-efficient devices, etc. In this paper, we follow the second avenue and propose an efficient approach based on reinforcement learning that improves the block broadcasting scheme in blockchain networks. The analysis and experimental results confirmed that the proposed improvement of the block propagation scheme could cleverly handle network dynamics and achieve better results than the default approach. Additionally, our technical integration of the simulator and developed RL environment can be used as a complete solution for further study of new schemes and protocols that use RL or other ML techniques.
Related papers
- A Comprehensive Survey on Green Blockchain: Developing the Next Generation of Energy Efficient and Sustainable Blockchain Systems [0.0]
This article analyzes the main components of blockchains and explores strategies to reduce their energy consumption.
For such a purpose, consensus mechanisms are compared, recommendations for reducing network communications energy consumption are provided.
The main challenges and limitations of reducing power consumption in blockchain systems are analyzed.
arXiv Detail & Related papers (2024-10-27T20:22:25Z) - Efficient Zero-Knowledge Proofs for Set Membership in Blockchain-Based Sensor Networks: A Novel OR-Aggregation Approach [20.821562115822182]
This paper introduces a novel OR-aggregation approach for zero-knowledge set membership proofs.
We provide a comprehensive theoretical foundation, detailed protocol specification, and rigorous security analysis.
Results show significant improvements in proof size, generation time, and verification efficiency.
arXiv Detail & Related papers (2024-10-11T18:16:34Z) - Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+ is a novel consensus algorithm to enhance the security of PoS blockchains.
We show that MRL-PoS+ significantly improves the attack resilience of PoS blockchains.
arXiv Detail & Related papers (2024-07-30T17:18:03Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Secure and Efficient Federated Learning Through Layering and Sharding
Blockchain [15.197940168865271]
This paper proposes ChainFL, a novel two-layer blockchain-driven Federated Learning system.
It splits the Internet network into multiple shards within the subchain layer, effectively reducing the scale of information exchange.
It also employs a Direct Acyclic Graph (DAG)-based mainchain as the mainchain layer, enabling parallel and asynchronous cross-shard validation.
arXiv Detail & Related papers (2021-04-27T12:19:07Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Constrained Deep Reinforcement Learning for Energy Sustainable Multi-UAV
based Random Access IoT Networks with NOMA [20.160827428161898]
We apply the Non-Orthogonal Multiple Access technique to improve massive channel access of a wireless IoT network where solar-powered Unmanned Aerial Vehicles (UAVs) relay data from IoT devices to remote servers.
IoT devices contend for accessing the shared wireless channel using an adaptive $p$-persistent slotted Aloha protocol; and the solar-powered UAVs adopt Successive Interference Cancellation (SIC) to decode multiple received data from IoT devices to improve access efficiency.
arXiv Detail & Related papers (2020-01-31T22:05:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.