論文の概要: Link Polarity Prediction from Sparse and Noisy Labels via Multiscale Social Balance
- arxiv url: http://arxiv.org/abs/2407.15643v1
- Date: Mon, 22 Jul 2024 14:02:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 14:51:29.709647
- Title: Link Polarity Prediction from Sparse and Noisy Labels via Multiscale Social Balance
- Title(参考訳): マルチスケール社会バランスによるスパースラベルとノイズラベルからのリンクポーラリティ予測
- Authors: Marco Minici, Federico Cinus, Francesco Bonchi, Giuseppe Manco,
- Abstract要約: 署名付きグラフニューラルネットワーク(SGNN)は,最近,署名付きネットワーク上での学習タスクに有効なツールとして注目されている。
これらのタスクの1つは、ネットワーク構造やその他の利用可能な極性から、この情報が欠落しているリンクの極性を予測することである。
本研究では,リンクの極性予測を改善するために,新しい社会バランスの概念を基盤として,半教師付き学習フレームワークを考案する。
- 参考スコア(独自算出の注目度): 8.635930195821263
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Signed Graph Neural Networks (SGNNs) have recently gained attention as an effective tool for several learning tasks on signed networks, i.e., graphs where edges have an associated polarity. One of these tasks is to predict the polarity of the links for which this information is missing, starting from the network structure and the other available polarities. However, when the available polarities are few and potentially noisy, such a task becomes challenging. In this work, we devise a semi-supervised learning framework that builds around the novel concept of \emph{multiscale social balance} to improve the prediction of link polarities in settings characterized by limited data quantity and quality. Our model-agnostic approach can seamlessly integrate with any SGNN architecture, dynamically reweighting the importance of each data sample while making strategic use of the structural information from unlabeled edges combined with social balance theory. Empirical validation demonstrates that our approach outperforms established baseline models, effectively addressing the limitations imposed by noisy and sparse data. This result underlines the benefits of incorporating multiscale social balance into SGNNs, opening new avenues for robust and accurate predictions in signed network analysis.
- Abstract(参考訳): 署名されたグラフニューラルネットワーク(SGNN)は、最近、署名されたネットワーク上のいくつかの学習タスク、すなわちエッジが関連する極性を持つグラフの効果的なツールとして注目を集めている。
これらのタスクの1つは、ネットワーク構造やその他の利用可能な極性から、この情報が欠落しているリンクの極性を予測することである。
しかし、利用可能な極性が少なく、潜在的にノイズの多い場合、そのような作業は困難になる。
本研究では,データ量と品質に制限のある設定におけるリンク極性の予測を改善するために,新しい概念である「emph{multiscale social balance}」を基盤とした半教師付き学習フレームワークを考案する。
我々のモデルに依存しないアプローチは任意のSGNNアーキテクチャとシームレスに統合することができ、ラベルのないエッジからの構造化情報をソーシャルバランス理論と組み合わせて戦略的に利用しながら、各データサンプルの重要性を動的に再重み付けすることができる。
経験的検証により,本手法は確立されたベースラインモデルよりも優れており,ノイズやスパースデータによる制約に効果的に対処できることが示された。
この結果は、SGNNにマルチスケールの社会的バランスを組み込むことの利点を浮き彫りにし、署名されたネットワーク分析における堅牢で正確な予測のための新たな道を開く。
関連論文リスト
- Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information [2.404163279345609]
本研究は,連合グラフ学習へのコンフォーマル予測の適用性を拡張した。
分散サブグラフにおけるリンク不足問題に対処し、CPセットサイズに対する悪影響を最小限に抑える。
本稿では,欠落したデータに対する負の影響を軽減するために,変分オートエンコーダに基づく近隣住民の再構築手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T20:22:25Z) - Signed Graph Autoencoder for Explainable and Polarization-Aware Network Embeddings [20.77134976354226]
署名付きネットワーク用に設計されたSGAAE(Signed Graph Archetypal Autoencoder)フレームワーク。
SGAAEは、異なる極端プロファイル上でノードメンバシップを表現するノードレベル表現を抽出する。
モデルは、実世界の4つのデータセット間で署名付きリンク予測の異なるタスクで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-16T16:40:40Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - SSSNET: Semi-Supervised Signed Network Clustering [4.895808607591299]
SSSNETと呼ばれる半教師付きネットワーククラスタリングのためのGNNフレームワークにおいて、トレーニングノードに対する確率的バランスの取れた正規化カット損失を新たに導入する。
主な斬新なアプローチは、署名されたネットワーク埋め込みにおける社会的バランス理論の役割に関する新しい見解である。
論文 参考訳(メタデータ) (2021-10-13T10:36:37Z) - MUSE: Multi-faceted Attention for Signed Network Embedding [4.442695760653947]
符号付きネットワーク埋め込みは、正と負のリンクを持つ符号付きネットワークにおけるノードの低次元表現を学習するアプローチである。
この問題を解決するために,MUlti-faceted attention-based Signed network Embedding フレームワーク MUSE を提案する。
論文 参考訳(メタデータ) (2021-04-29T16:09:35Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
薬物標的結合親和性予測に適したDiStance-aware Molecule graph Attention Network (S-MAN)を提案する。
そこで,我々はまず,構築したポケットリガンドグラフに位相構造と空間位置情報を統合する位置符号化機構を提案する。
また,エッジレベルアグリゲーションとノードレベルアグリゲーションを有するエッジノード階層的アグリゲーション構造を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:44:01Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
ソーシャルネットワークにおけるサイン付きリンク予測は、ユーザ(すなわちノード)間の基盤となる関係(リンク)を明らかにすることを目的としている
我々は Signed Infomax Hyperbolic Graph (textbfSIHG) と呼ばれる統一されたフレームワークを開発する。
高次ユーザ関係と複雑な階層をモデル化するために、ノードの埋め込みを投影し、より低歪みの双曲空間で測定する。
論文 参考訳(メタデータ) (2020-11-25T05:09:03Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。