Coca4ai: checking energy behaviors on AI data centers
- URL: http://arxiv.org/abs/2407.15670v1
- Date: Mon, 22 Jul 2024 14:33:10 GMT
- Title: Coca4ai: checking energy behaviors on AI data centers
- Authors: Paul Gay, Éric Bilinski, Anne-Laure Ligozat,
- Abstract summary: This paper shows a proof of concept of easy and lightweight monitoring of energy behaviors at the scale of a whole data center.
Results show that there is an interesting potential from the efficiency point of view, providing arguments to create user engagement.
- Score: 0.12997390777731951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring energy behaviors in AI data centers is crucial, both to reduce their energy consumption and to raise awareness among their users which are key actors in the AI field. This paper shows a proof of concept of easy and lightweight monitoring of energy behaviors at the scale of a whole data center, a user or a job submission. Our system uses software wattmeters and we validate our setup with per node accurate external wattmeters. Results show that there is an interesting potential from the efficiency point of view, providing arguments to create user engagement thanks to energy monitoring.
Related papers
- Local Differential Privacy for Smart Meter Data Sharing [13.362785829428457]
Local differential privacy (LDP) methods provide strong privacy guarantees with high efficiency in addressing privacy concerns.
We propose a novel LDP approach (named LDP-SmartEnergy) that utilizes randomized response techniques with sliding windows.
Our evaluations show that LDP-SmartEnergy runs efficiently compared to baseline methods.
arXiv Detail & Related papers (2023-11-08T09:22:23Z) - Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices [8.140572894424208]
We conduct a threefold study, including energy measurement, prediction, and efficiency scoring.
Firstly, we present a detailed, first-of-its-kind measurement study that uncovers the energy consumption characteristics of on-device deep learning.
Secondly, we design and implement the first kernel-level energy predictors for edge devices based on our kernel-level energy dataset.
arXiv Detail & Related papers (2023-10-19T23:55:00Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
We employ computer vision techniques of AI to design a non-invasive load monitoring method for smart electric energy management.
We propose to recognize all electric loads from color feature images using a U-shape deep neural network with multi-scale feature extraction and attention mechanism.
arXiv Detail & Related papers (2023-08-08T04:52:19Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions.
Recent advances reveal that deep neural networks (DNNs) can get favorable performance for NILM.
We introduce the idea of adversarial learning into NILM, which is new for the energy disaggregation task.
arXiv Detail & Related papers (2021-08-02T03:56:35Z) - EnergyVis: Interactively Tracking and Exploring Energy Consumption for
ML Models [8.939420322774243]
EnergyVis is an interactive energy consumption tracker for machine learning (ML) models.
It enables researchers to interactively track, visualize and compare model energy consumption across key energy consumption and carbon footprint metrics.
EnergyVis aims to raise awareness concerning computational sustainability by interactively highlighting excessive energy usage during model training.
arXiv Detail & Related papers (2021-03-30T15:33:43Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
This paper presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection.
Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection.
arXiv Detail & Related papers (2020-11-26T00:32:07Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z) - Reshaping consumption habits by exploiting energy-related micro-moment
recommendations: A case study [2.741120981602367]
This work builds on the detection of repeated usage patterns from consumption logs.
It presents the structure and operation of an energy consumption reduction system, which employs a set of sensors, smart-meters and actuators.
The system recommends to the user the proper energy saving action at the right moment and gradually shapes user's habits.
arXiv Detail & Related papers (2020-10-09T17:29:56Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.