Double-Exponential Increases in Inference Energy: The Cost of the Race for Accuracy
- URL: http://arxiv.org/abs/2412.09731v1
- Date: Thu, 12 Dec 2024 21:44:08 GMT
- Title: Double-Exponential Increases in Inference Energy: The Cost of the Race for Accuracy
- Authors: Zeyu Yang, Karel Adamek, Wesley Armour,
- Abstract summary: Deep learning models in computer vision pose increasing concerns about energy consumption and sustainability.
We conduct a comprehensive analysis of the inference energy consumption of 1,200 ImageNet classification models.
We identify key factors contributing to energy consumption and demonstrate methods to improve energy efficiency.
- Score: 3.6731536660959985
- License:
- Abstract: Deep learning models in computer vision have achieved significant success but pose increasing concerns about energy consumption and sustainability. Despite these concerns, there is a lack of comprehensive understanding of their energy efficiency during inference. In this study, we conduct a comprehensive analysis of the inference energy consumption of 1,200 ImageNet classification models - the largest evaluation of its kind to date. Our findings reveal a steep diminishing return in accuracy gains relative to the increase in energy usage, highlighting sustainability concerns in the pursuit of marginal improvements. We identify key factors contributing to energy consumption and demonstrate methods to improve energy efficiency. To promote more sustainable AI practices, we introduce an energy efficiency scoring system and develop an interactive web application that allows users to compare models based on accuracy and energy consumption. By providing extensive empirical data and practical tools, we aim to facilitate informed decision-making and encourage collaborative efforts in developing energy-efficient AI technologies.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
Much of this debate has concentrated on direct impact without addressing the significant indirect effects.
This paper examines how the problem of Jevons' Paradox applies to AI, whereby efficiency gains may paradoxically spur increased consumption.
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - Just In Time Transformers [2.7350304370706797]
JITtrans is a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy.
Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems.
arXiv Detail & Related papers (2024-10-22T10:33:00Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Watt For What: Rethinking Deep Learning's Energy-Performance Relationship [13.505163099299025]
We study the trade-off between model accuracy and electricity consumption of deep learning models.
By evaluating accuracy per unit of electricity consumed, we demonstrate how smaller, more energy-efficient models can significantly expedite research.
This research contributes to a more equitable research landscape, where smaller entities can compete effectively with larger counterparts.
arXiv Detail & Related papers (2023-10-10T11:08:31Z) - Building Energy Efficiency through Advanced Regression Models and Metaheuristic Techniques for Sustainable Management [3.6811136816751513]
This research leverages extensive raw data from building infrastructures to uncover energy consumption patterns.
We investigate the factors influencing energy efficiency and cost reduction in buildings, utilizing Lasso Regression, Decision Tree, and Random Forest models.
We apply metaheuristic techniques to enhance the Decision Tree algorithm, resulting in improved predictive precision.
arXiv Detail & Related papers (2023-05-15T01:21:42Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
We present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes.
One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer.
arXiv Detail & Related papers (2022-12-03T21:40:55Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
We study relevant models in the areas of computer vision and natural language processing.
For a sustained increase in performance we see a much softer growth in energy consumption than previously anticipated.
arXiv Detail & Related papers (2021-09-12T09:40:18Z) - Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision [31.781943982148025]
We present the first large-scale energy consumption benchmark for efficient computer vision models.
A new metric is proposed to explicitly evaluate the full-cycle energy consumption under different model usage intensity.
arXiv Detail & Related papers (2021-08-30T18:22:36Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.