Flow-guided Motion Prediction with Semantics and Dynamic Occupancy Grid Maps
- URL: http://arxiv.org/abs/2407.15675v1
- Date: Mon, 22 Jul 2024 14:42:34 GMT
- Title: Flow-guided Motion Prediction with Semantics and Dynamic Occupancy Grid Maps
- Authors: Rabbia Asghar, Wenqian Liu, Lukas Rummelhard, Anne Spalanzani, Christian Laugier,
- Abstract summary: Occupancy Grid Maps (OGMs) are commonly employed for scene prediction.
Recent studies have successfully combined OGMs with deep learning methods to predict the evolution of scene.
We propose a novel multi-task framework that leverages dynamic OGMs and semantic information to predict both future vehicle semantic grids and the future flow of the scene.
- Score: 5.9803668726235575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of driving scenes is essential for road safety and autonomous driving. Occupancy Grid Maps (OGMs) are commonly employed for scene prediction due to their structured spatial representation, flexibility across sensor modalities and integration of uncertainty. Recent studies have successfully combined OGMs with deep learning methods to predict the evolution of scene and learn complex behaviours. These methods, however, do not consider prediction of flow or velocity vectors in the scene. In this work, we propose a novel multi-task framework that leverages dynamic OGMs and semantic information to predict both future vehicle semantic grids and the future flow of the scene. This incorporation of semantic flow not only offers intermediate scene features but also enables the generation of warped semantic grids. Evaluation on the real-world NuScenes dataset demonstrates improved prediction capabilities and enhanced ability of the model to retain dynamic vehicles within the scene.
Related papers
- AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction framework.
Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix.
We employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings.
arXiv Detail & Related papers (2023-09-05T06:28:13Z) - Vehicle Motion Forecasting using Prior Information and Semantic-assisted
Occupancy Grid Maps [6.99274104609965]
Motion is a challenging task for autonomous vehicles due to uncertainty in the sensor data, the non-deterministic nature of future, and complex behavior.
In this paper, we tackle this problem by representing the scene as dynamic occupancy grid maps (DOGMs)
We propose a novel framework that combines deep-temporal and probabilistic approaches to predict vehicle behaviors.
arXiv Detail & Related papers (2023-08-08T14:49:44Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Physically constrained short-term vehicle trajectory forecasting with
naive semantic maps [6.85316573653194]
We propose a model that learns to extract relevant road features from semantic maps as well as general motion of agents.
We show that our model is not only capable of anticipating future motion whilst taking into consideration road boundaries, but can also effectively and precisely predict trajectories for a longer time horizon than initially trained for.
arXiv Detail & Related papers (2020-06-09T09:52:44Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.