Vehicle Motion Forecasting using Prior Information and Semantic-assisted
Occupancy Grid Maps
- URL: http://arxiv.org/abs/2308.04303v1
- Date: Tue, 8 Aug 2023 14:49:44 GMT
- Title: Vehicle Motion Forecasting using Prior Information and Semantic-assisted
Occupancy Grid Maps
- Authors: Rabbia Asghar, Manuel Diaz-Zapata, Lukas Rummelhard, Anne Spalanzani,
Christian Laugier
- Abstract summary: Motion is a challenging task for autonomous vehicles due to uncertainty in the sensor data, the non-deterministic nature of future, and complex behavior.
In this paper, we tackle this problem by representing the scene as dynamic occupancy grid maps (DOGMs)
We propose a novel framework that combines deep-temporal and probabilistic approaches to predict vehicle behaviors.
- Score: 6.99274104609965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion prediction is a challenging task for autonomous vehicles due to
uncertainty in the sensor data, the non-deterministic nature of future, and
complex behavior of agents. In this paper, we tackle this problem by
representing the scene as dynamic occupancy grid maps (DOGMs), associating
semantic labels to the occupied cells and incorporating map information. We
propose a novel framework that combines deep-learning-based spatio-temporal and
probabilistic approaches to predict vehicle behaviors.Contrary to the
conventional OGM prediction methods, evaluation of our work is conducted
against the ground truth annotations. We experiment and validate our results on
real-world NuScenes dataset and show that our model shows superior ability to
predict both static and dynamic vehicles compared to OGM predictions.
Furthermore, we perform an ablation study and assess the role of semantic
labels and map in the architecture.
Related papers
- Flow-guided Motion Prediction with Semantics and Dynamic Occupancy Grid Maps [5.9803668726235575]
Occupancy Grid Maps (OGMs) are commonly employed for scene prediction.
Recent studies have successfully combined OGMs with deep learning methods to predict the evolution of scene.
We propose a novel multi-task framework that leverages dynamic OGMs and semantic information to predict both future vehicle semantic grids and the future flow of the scene.
arXiv Detail & Related papers (2024-07-22T14:42:34Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Physically constrained short-term vehicle trajectory forecasting with
naive semantic maps [6.85316573653194]
We propose a model that learns to extract relevant road features from semantic maps as well as general motion of agents.
We show that our model is not only capable of anticipating future motion whilst taking into consideration road boundaries, but can also effectively and precisely predict trajectories for a longer time horizon than initially trained for.
arXiv Detail & Related papers (2020-06-09T09:52:44Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.