論文の概要: LLMmap: Fingerprinting For Large Language Models
- arxiv url: http://arxiv.org/abs/2407.15847v2
- Date: Wed, 24 Jul 2024 16:07:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 17:52:45.660966
- Title: LLMmap: Fingerprinting For Large Language Models
- Title(参考訳): LLMmap: 大きな言語モデルのためのフィンガープリント
- Authors: Dario Pasquini, Evgenios M. Kornaropoulos, Giuseppe Ateniese,
- Abstract要約: LLM 統合アプリケーションを対象とした第1世代の指紋認証攻撃 LLMmap を紹介する。
わずか8つの相互作用で、LLMmapは95%以上の精度でLSMを正確に識別できる。
- 参考スコア(独自算出の注目度): 15.726286532500971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce LLMmap, a first-generation fingerprinting attack targeted at LLM-integrated applications. LLMmap employs an active fingerprinting approach, sending carefully crafted queries to the application and analyzing the responses to identify the specific LLM model in use. With as few as 8 interactions, LLMmap can accurately identify LLMs with over 95% accuracy. More importantly, LLMmap is designed to be robust across different application layers, allowing it to identify LLMs operating under various system prompts, stochastic sampling hyperparameters, and even complex generation frameworks such as RAG or Chain-of-Thought.
- Abstract(参考訳): LLM 統合アプリケーションを対象とした第1世代の指紋認証攻撃 LLMmap を紹介する。
LLMmapはアクティブなフィンガープリントアプローチを採用し、アプリケーションに慎重にクエリを送信し、レスポンスを分析して使用中の特定のLLMモデルを特定する。
わずか8つの相互作用で、LLMmapは95%以上の精度でLSMを正確に識別できる。
さらに重要なのは、LLMmapはさまざまなアプリケーション層で堅牢に設計されており、様々なシステムプロンプト、確率的なサンプリングハイパーパラメータ、RAGやChain-of-Thoughtといった複雑な生成フレームワークでもLLMを識別できる。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Large Language Models as Software Components: A Taxonomy for LLM-Integrated Applications [0.0]
大規模言語モデル(LLM)が最近広く採用されている。自律エージェントやソフトウェア工学のツールとしての利用について調査している。
一方、LLMの統合されたアプリケーションは、LLMを利用してタスクを実行するソフトウェアシステムである。
本研究は,LLM統合アプリケーションに対する分類学を提供し,これらのシステムの解析と記述のためのフレームワークを提供する。
論文 参考訳(メタデータ) (2024-06-13T21:32:56Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrotは、LLMベースのアプリケーションのエンドツーエンドエクスペリエンスに焦点を当てたサービスシステムである。
Semantic Variableはリクエストのプロンプトで入出力変数に注釈を付け、複数のLLMリクエストを接続する際にデータパイプラインを生成する。
論文 参考訳(メタデータ) (2024-05-30T09:46:36Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
本稿では,LLMの幻覚検出システムについて述べる。
SemEval-2024 Task 6のモデル非依存トラックで2位を獲得した。
論文 参考訳(メタデータ) (2024-02-20T11:01:39Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - Looking Right is Sometimes Right: Investigating the Capabilities of Decoder-only LLMs for Sequence Labeling [0.0]
最近のデコーダのみの大規模言語モデル(LLM)は、より小さなステートベースのエンコーダと同等に動作する。
因果マスクを階層的に除去することで,IEタスク上でのオープンLLMのSL性能を向上させる手法について検討する。
その結果,層依存性CM除去によるオープンLCMは,強いエンコーダや命令調整LDMよりも優れていた。
論文 参考訳(メタデータ) (2024-01-25T22:50:48Z) - Generative Multimodal Entity Linking [24.322540112710918]
MEL(Multimodal Entity Linking)は、知識ベースからの参照エンティティへの参照をマルチモーダルコンテキストでマッピングするタスクである。
既存のMEL法は主に複雑なマルチモーダル相互作用機構の設計に重点を置いており、すべてのモデルパラメータを微調整する必要がある。
大規模言語モデル(LLM)に基づくジェネレーティブマルチモーダルエンティティリンクフレームワークであるGEMELを提案する。
当社のフレームワークは市販の言語モデルと互換性があり、効率的で汎用的なソリューションへの道を開いたものです。
論文 参考訳(メタデータ) (2023-06-22T07:57:19Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。