論文の概要: AutoAD-Zero: A Training-Free Framework for Zero-Shot Audio Description
- arxiv url: http://arxiv.org/abs/2407.15850v1
- Date: Mon, 22 Jul 2024 17:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 13:41:12.823685
- Title: AutoAD-Zero: A Training-Free Framework for Zero-Shot Audio Description
- Title(参考訳): AutoAD-Zero: ゼロショットオーディオ記述のためのトレーニングフリーフレームワーク
- Authors: Junyu Xie, Tengda Han, Max Bain, Arsha Nagrani, Gül Varol, Weidi Xie, Andrew Zisserman,
- Abstract要約: 本研究の目的は,映画とテレビシリーズのオーディオ記述(AD)を無訓練で生成することである。
市販のビジュアル言語モデル(VLM)と大規模言語モデル(LLM)のパワーを利用する。
当社のアプローチであるAutoAD-Zeroは、映画とテレビシリーズのAD生成において優れたパフォーマンスを示し、最先端のCRITICスコアを達成しています。
- 参考スコア(独自算出の注目度): 92.72058446133468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our objective is to generate Audio Descriptions (ADs) for both movies and TV series in a training-free manner. We use the power of off-the-shelf Visual-Language Models (VLMs) and Large Language Models (LLMs), and develop visual and text prompting strategies for this task. Our contributions are three-fold: (i) We demonstrate that a VLM can successfully name and refer to characters if directly prompted with character information through visual indications without requiring any fine-tuning; (ii) A two-stage process is developed to generate ADs, with the first stage asking the VLM to comprehensively describe the video, followed by a second stage utilising a LLM to summarise dense textual information into one succinct AD sentence; (iii) A new dataset for TV audio description is formulated. Our approach, named AutoAD-Zero, demonstrates outstanding performance (even competitive with some models fine-tuned on ground truth ADs) in AD generation for both movies and TV series, achieving state-of-the-art CRITIC scores.
- Abstract(参考訳): 本研究の目的は,映画とテレビシリーズのオーディオ記述(AD)を無訓練で生成することである。
我々は,市販のビジュアル言語モデル (VLM) と大規模言語モデル (LLM) のパワーを用いて,このタスクの視覚的およびテキスト的促進戦略を開発する。
私たちの貢献は3倍です。
i)VLMは、微調整を必要とせず、視覚的表示を通じて文字情報を直接誘導することで、文字の命名と参照を成功させることができることを実証する。
2)ADを生成するための2段階のプロセスが開発され、第1段階は、VLMに動画を包括的に記述するよう要求し、続いて、LLMを利用して、密集したテキスト情報を1つの簡潔なAD文に要約する第2段階を使用する。
(iii)テレビ音声記述のための新しいデータセットを策定する。
当社のアプローチであるAutoAD-Zeroは、映画とテレビシリーズのAD生成において優れたパフォーマンスを示し、最先端のCRITICスコアを達成しています。
関連論文リスト
- AutoAD III: The Prequel -- Back to the Pixels [96.27059234129788]
本稿では,映像データを用いたADデータセット構築のための2つのアプローチと,これを用いたトレーニングと評価データセットの構築を提案する。
我々は,凍結した事前学習されたビジュアルエンコーダと大規模言語モデルを用いて,生動画を取り込み,ADを生成するQ-formerベースのアーキテクチャを開発した。
人間のパフォーマンスによく適合したAD品質をベンチマークするために、新しい評価指標を提供する。
論文 参考訳(メタデータ) (2024-04-22T17:59:57Z) - Contextual AD Narration with Interleaved Multimodal Sequence [50.240534605090396]
このタスクは、視覚障害者が映画のような長めのビデオコンテンツにアクセスするのを助けるために、視覚障害者のための視覚要素の記述を作成することを目的としている。
ビデオ機能、テキスト、文字バンク、コンテキスト情報を入力として、生成されたADは名前で文字に対応することができる。
我々は、ADを生成するためのシンプルで統一されたフレームワークを通じて、事前訓練された基礎モデルを活用することを提案する。
論文 参考訳(メタデータ) (2024-03-19T17:27:55Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
高品質なキャプションを持つ音声データセットを構築するための,革新的で自動的なアプローチを提案する。
具体的には、150万以上のオーディオテキストペアからなる、大規模で高品質なオーディオ言語データセットをAuto-ACDとして構築する。
我々はLLMを用いて,抽出したマルチモーダルな手がかりによって導かれる,各音声の連接キャプションを言い換える。
論文 参考訳(メタデータ) (2023-09-20T17:59:32Z) - AutoAD: Movie Description in Context [91.98603496476215]
本稿では,映画を取り込み,ADをテキスト形式で出力する自動音声記述(AD)モデルを提案する。
我々は、GPTやCLIPといった事前訓練された基礎モデルのパワーを活用し、視覚的に条件付けられたテキスト生成のために2つのモデルをブリッジするマッピングネットワークをトレーニングするのみである。
論文 参考訳(メタデータ) (2023-03-29T17:59:58Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
本稿では,視覚情報を用いた音声のみのモデル拡張手法であるAVFormerについて述べる。
最小限のトレーニング時間とパラメータで、弱ラベル付き動画データを少量でトレーニングできることが示される。
また、トレーニング中に簡単なカリキュラム方式を導入し、モデルが音声と視覚情報を効果的に処理できることを示します。
論文 参考訳(メタデータ) (2023-03-29T07:24:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。