論文の概要: Spatial-Temporal Cross-View Contrastive Pre-training for Check-in Sequence Representation Learning
- arxiv url: http://arxiv.org/abs/2407.15899v3
- Date: Thu, 25 Jul 2024 07:18:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:18:08.999285
- Title: Spatial-Temporal Cross-View Contrastive Pre-training for Check-in Sequence Representation Learning
- Title(参考訳): チェックインシーケンス表現学習のための空間-時間的クロスビューコントラスト事前学習
- Authors: Letian Gong, Huaiyu Wan, Shengnan Guo, Xiucheng Li, Yan Lin, Erwen Zheng, Tianyi Wang, Zeyu Zhou, Youfang Lin,
- Abstract要約: 本稿では,チェックインシーケンス表現学習のための空間-時間的クロスビューコントラスト表現(ST CCR)フレームワークを提案する。
ST CCRは「空間的話題」と「時間的意図」の視点から自己スーパービジョンを採用し、意味レベルでの空間的情報と時間的情報の効果的な融合を促進する。
実世界の3つのデータセット上でST CCRを広範囲に評価し、3つの下流タスクにおいて優れた性能を示す。
- 参考スコア(独自算出の注目度): 21.580705078081078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of location-based services (LBS) has yielded massive amounts of data on human mobility. Effectively extracting meaningful representations for user-generated check-in sequences is pivotal for facilitating various downstream services. However, the user-generated check-in data are simultaneously influenced by the surrounding objective circumstances and the user's subjective intention. Specifically, the temporal uncertainty and spatial diversity exhibited in check-in data make it difficult to capture the macroscopic spatial-temporal patterns of users and to understand the semantics of user mobility activities. Furthermore, the distinct characteristics of the temporal and spatial information in check-in sequences call for an effective fusion method to incorporate these two types of information. In this paper, we propose a novel Spatial-Temporal Cross-view Contrastive Representation (STCCR) framework for check-in sequence representation learning. Specifically, STCCR addresses the above challenges by employing self-supervision from "spatial topic" and "temporal intention" views, facilitating effective fusion of spatial and temporal information at the semantic level. Besides, STCCR leverages contrastive clustering to uncover users' shared spatial topics from diverse mobility activities, while employing angular momentum contrast to mitigate the impact of temporal uncertainty and noise. We extensively evaluate STCCR on three real-world datasets and demonstrate its superior performance across three downstream tasks.
- Abstract(参考訳): 位置情報サービス(LBS)の急速な成長は、人間の移動性に関する膨大なデータを生み出している。
ユーザ生成したチェックインシーケンスに対する意味のある表現を効果的に抽出することは、さまざまなダウンストリームサービスを容易にする上で重要である。
しかし、ユーザ生成チェックインデータは、周囲の客観的状況とユーザの主観的意図に同時に影響される。
具体的には、チェックインデータに現れる時間的不確実性と空間的多様性は、ユーザのマクロな空間的時間的パターンを捉え、ユーザのモビリティ活動の意味を理解するのを困難にしている。
さらに、チェックインシーケンスにおける時間的・空間的な情報の異なる特徴は、これらの2種類の情報を効果的に融合する方法を要求する。
本稿では,チェックインシーケンス表現学習のための空間-時間的クロスビューコントラスト表現(STCCR)フレームワークを提案する。
具体的には、STCCRは「空間的話題」と「時間的意図」の視点から自己スーパービジョンを取り入れ、意味レベルでの空間的情報と時間的情報を効果的に融合させることによって、上記の課題に対処する。
さらに、STCCRはコントラッシブクラスタリングを活用し、多様なモビリティ活動からユーザの共有空間トピックを明らかにすると同時に、時間的不確実性やノイズの影響を軽減するために、角度運動量を利用する。
実世界の3つのデータセット上でSTCCRを広範囲に評価し、3つの下流タスクにおいて優れた性能を示す。
関連論文リスト
- Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - STS-CCL: Spatial-Temporal Synchronous Contextual Contrastive Learning
for Urban Traffic Forecasting [4.947443433688782]
本研究は、高度なコントラスト学習を採用し、新しい時空間コントラスト学習(STS-CCL)モデルを提案する。
STS-CCLコントラスト学習モデルに基づく予測器の構築は,既存のトラフィック予測ベンチマークよりも優れた性能を発揮することを示す実験と評価を行った。
論文 参考訳(メタデータ) (2023-07-05T03:47:28Z) - Spatiotemporal k-means [39.98633724527769]
マルチスケールクラスタを解析できるk-means (STk) と呼ばれる2つの時間クラスタリング手法を提案する。
我々は、STkMがより複雑な機械学習タスク、特にビデオにおける関心の検出と追跡の教師なし領域にどのように拡張できるかを示す。
論文 参考訳(メタデータ) (2022-11-10T04:40:31Z) - Spatial-Temporal Feature Extraction and Evaluation Network for Citywide
Traffic Condition Prediction [1.321203201549798]
二重層-時空間特徴抽出・評価モデル(DL-STFEE)を提案する。
3つの実験セットが実際の交通データセット上で実施され、DL-STFEEが空間的特徴を効果的に捉えることができることを示す。
論文 参考訳(メタデータ) (2022-07-22T12:15:41Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS)は、シーケンシャルデータのための新しいDisentanglement Enhanceingフレームワークである。
DTSは時系列の解釈可能な表現として階層的意味概念を生成する。
DTSは、セマンティック概念の解釈性が高く、下流アプリケーションで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-17T22:02:24Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Temporal Memory Relation Network for Workflow Recognition from Surgical
Video [53.20825496640025]
本研究では, 長期および多スケールの時間パターンを関連づける, エンドツーエンドの時間メモリ関係ネットワーク (TMNet) を提案する。
我々はこのアプローチを2つのベンチマーク手術ビデオデータセットで広範囲に検証した。
論文 参考訳(メタデータ) (2021-03-30T13:20:26Z) - An Enhanced Adversarial Network with Combined Latent Features for
Spatio-Temporal Facial Affect Estimation in the Wild [1.3007851628964147]
本稿では,遅延特徴に基づく時間的モデリングにより,空間的特徴と時間的特徴の両方を効率的に抽出する新しいモデルを提案する。
提案モデルは3つの主要ネットワークから成り,造語生成器,判別器,コンビネータを用いて,適応型アテンションモジュールを実現するために,敵対的な学習環境において訓練を行う。
論文 参考訳(メタデータ) (2021-02-18T04:10:12Z) - Co-Saliency Spatio-Temporal Interaction Network for Person
Re-Identification in Videos [85.6430597108455]
本稿では,ビデオにおける人物の身元確認のためのCSTNet(Co-Saliency Spatio-Temporal Interaction Network)を提案する。
ビデオフレーム間の共通した有意な前景領域をキャプチャし、そのような領域からの空間的時間的長距離コンテキストの相互依存性を探索する。
CSTNet内の複数の空間的時間的相互作用モジュールを提案し,その特徴と空間的時間的情報相関の空間的・時間的長期的相互依存性を利用した。
論文 参考訳(メタデータ) (2020-04-10T10:23:58Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。