論文の概要: Multimodal Input Aids a Bayesian Model of Phonetic Learning
- arxiv url: http://arxiv.org/abs/2407.15992v1
- Date: Mon, 22 Jul 2024 19:00:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 21:25:09.916238
- Title: Multimodal Input Aids a Bayesian Model of Phonetic Learning
- Title(参考訳): ベイズ的学習モデルを用いたマルチモーダル入力
- Authors: Sophia Zhi, Roger P. Levy, Stephan C. Meylan,
- Abstract要約: 本稿では,既存の音声コーパスのための高品質な音声合成ビデオを作成する方法を提案する。
我々の学習モデルは、オーディオ視覚入力の訓練と試験の両方を行うと、音素識別電池の8.1%の相対的な改善が達成される。
視覚情報は特にノイズの多いオーディオ環境において有益である。
- 参考スコア(独自算出の注目度): 0.6827423171182154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the many tasks facing the typically-developing child language learner is learning to discriminate between the distinctive sounds that make up words in their native language. Here we investigate whether multimodal information--specifically adult speech coupled with video frames of speakers' faces--benefits a computational model of phonetic learning. We introduce a method for creating high-quality synthetic videos of speakers' faces for an existing audio corpus. Our learning model, when both trained and tested on audiovisual inputs, achieves up to a 8.1% relative improvement on a phoneme discrimination battery compared to a model trained and tested on audio-only input. It also outperforms the audio model by up to 3.9% when both are tested on audio-only data, suggesting that visual information facilitates the acquisition of acoustic distinctions. Visual information is especially beneficial in noisy audio environments, where an audiovisual model closes 67% of the loss in discrimination performance of the audio model in noise relative to a non-noisy environment. These results demonstrate that visual information benefits an ideal learner and illustrate some of the ways that children might be able to leverage visual cues when learning to discriminate speech sounds.
- Abstract(参考訳): 一般的に発達している児童言語学習者の直面する課題の1つは、母国語の単語を構成する独特の音を区別することである。
本稿では,音声学習の計算モデルとしてマルチモーダル情報,特に成人音声と話者の顔の映像フレームが組み合わされているかを検討する。
本稿では,既存の音声コーパスのための高品質な音声合成ビデオを作成する方法を提案する。
学習モデルでは,音声のみの入力でトレーニングおよびテストを行った場合,音素識別バッテリに対して最大8.1%の相対的な改善が達成される。
また、オーディオのみのデータでテストされた場合、最大3.9%の音響モデルよりも優れており、視覚情報が音響的区別の獲得を促進することを示唆している。
視覚情報はノイズの多い環境において特に有益であり、ノイズのない環境と比較して音響モデルの識別性能の損失の67%をオーディオ視覚モデルが閉じている。
これらの結果は、視覚情報が理想的な学習者に利益をもたらすことを示し、子どもが音声を識別する学習において視覚的手がかりを活用できる方法をいくつか示している。
関連論文リスト
- Learning Audio Concepts from Counterfactual Natural Language [34.118579918018725]
本研究では,音声領域における因果推論と反事実解析を紹介する。
本モデルは,人間の注釈付き参照テキストからの音響特性と音源情報について考察する。
具体的には、オープンエンド言語に基づく音声検索タスクにおけるトップ1の精度が43%以上向上した。
論文 参考訳(メタデータ) (2024-01-10T05:15:09Z) - AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining [46.22290575167155]
本稿では, 音声, 音楽, 音響効果生成のための同じ学習手法を用いた枠組みを提案する。
私たちのフレームワークでは、LOA(Language of Audio)と呼ばれる音声の一般的な表現を導入しています。
論文 参考訳(メタデータ) (2023-08-10T17:55:13Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - Learning Audio-Visual Dereverberation [87.52880019747435]
環境中の表面や物体を反射する音声からの残響は、人間の知覚の質を低下させるだけでなく、自動音声認識の精度にも深刻な影響を及ぼす。
我々の考えは、音声・視覚的観察から音声を除去することである。
そこで我々は,観測音と映像シーンの両方に基づいて残響を除去することを学ぶエンドツーエンドアプローチである,視覚インフォームド・デバーベレーション・オブ・オーディオ(VIDA)を紹介した。
論文 参考訳(メタデータ) (2021-06-14T20:01:24Z) - AudioViewer: Learning to Visualize Sound [12.71759722609666]
聴覚障害者のための聴覚知覚を創造し,聴覚障害者の学習におけるフィードバックの促進を図る。
音声から映像への変換は,共用構造を持つ共用ラテント空間に圧縮することで行う。
論文 参考訳(メタデータ) (2020-12-22T21:52:45Z) - Self-Supervised Learning of Audio-Visual Objects from Video [108.77341357556668]
本稿では,音源の局所化とグループ化,時間とともに情報収集を行うための光フローに着目したモデルを提案する。
本稿では,4つの下流音声指向タスクにおいて,モデルが学習する音声-視覚オブジェクトの埋め込みの有効性を実証する。
論文 参考訳(メタデータ) (2020-08-10T16:18:01Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
生音声波形から自己教師付き音声表現を学習する手法を提案する。
音声のみの自己スーパービジョン(情報的音響属性の予測)と視覚的自己スーパービジョン(音声から発話顔を生成する)を組み合わせることで生音声エンコーダを訓練する。
本研究は,音声表現学習におけるマルチモーダル・セルフ・スーパービジョンの可能性を示すものである。
論文 参考訳(メタデータ) (2020-07-08T14:07:06Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
音声視覚音声の文脈における視覚的モダリティによって導かれる音声表現を学習するためのフレームワークを提案する。
音声クリップに対応する静止画像をアニメーション化し、音声セグメントの実際の映像にできるだけ近いよう、生成した映像を最適化する。
我々は,感情認識のための技術成果と,音声認識のための競争結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T14:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。