論文の概要: Wallcamera: Reinventing the Wheel?
- arxiv url: http://arxiv.org/abs/2407.16015v1
- Date: Mon, 22 Jul 2024 19:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 19:25:20.601998
- Title: Wallcamera: Reinventing the Wheel?
- Title(参考訳): Wallcamera: 車輪の再発明?
- Authors: Aurélien Bourquard, Jeff Yan,
- Abstract要約: We show that the key insights behind the Wallcamera is that the prototype of differential imaging forensics (DIF)。
DIFは、写真家の個人識別可能な情報の回復を含む、多くの法医学に応用されている。
Wallcameraの実際のイノベーションは、DIFが示したよりも細かい粒度でアクティビティ認識を達成することです。
- 参考スコア(独自算出の注目度): 0.9310318514564273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developed at MIT CSAIL, the Wallcamera has captivated the public's imagination. Here, we show that the key insight underlying the Wallcamera is the same one that underpins the concept and the prototype of differential imaging forensics (DIF), both of which were validated and reported several years prior to the Wallcamera's debut. Rather than being the first to extract and amplify invisible signals -- aka latent evidence in the forensics context -- from wall reflections in a video, or the first to propose activity recognition following that approach, the Wallcamera's actual innovation is achieving activity recognition at a finer granularity than DIF demonstrated. In addition to activity recognition, DIF as conceived has a number of other applications in forensics, including 1) the recovery of a photographer's personal identifiable information such as body width, height, and even the color of their clothing, from a single photo, and 2) the detection of image tampering and deepfake videos.
- Abstract(参考訳): MITのCSAILが開発したWallcameraは、大衆の想像力をつかんだ。
ここでは、Wallcameraの背景にある重要な洞察が、Wallcameraがデビューする数年前に検証され報告された差動画像法医学(DIF)の概念とプロトタイプの基盤となるものと同じであることを示す。
ビデオの中の壁の反射から目に見えない信号を抽出し増幅する、または、そのアプローチに続くアクティビティ認識を提案する、いわゆる法医学的文脈における潜在証拠である、最初のものではなく、Wallcameraの実際の革新は、DIFが示したより細かい粒度でアクティビティ認識を達成することである。
活動認識に加え、DIFは法医学など多くの応用がある。
1)1枚の写真から、身長、身長、衣服の色など、写真家の個人識別情報の回復
2)画像改ざん・ディープフェイク映像の検出
関連論文リスト
- Investigating Event-Based Cameras for Video Frame Interpolation in Sports [59.755469098797406]
本稿では,スポーツスローモーションビデオを生成するためのイベントベースビデオフレーム補間(VFI)モデルについて検討する。
特に,スポーツ映像を撮影するためのRGBとイベントベースカメラを含むバイカメラ記録装置の設計と実装を行い,両カメラの時間的整列と空間的登録を行う。
実験により,市販のイベントベースVFIモデルであるTimeLensが,スポーツビデオのスローモーション映像を効果的に生成できることが実証された。
論文 参考訳(メタデータ) (2024-07-02T15:39:08Z) - Inverting the Imaging Process by Learning an Implicit Camera Model [73.81635386829846]
本稿では,ディープニューラルネットワークとしてのカメラの物理画像処理を表現した,新しい暗黙カメラモデルを提案する。
本稿では,この暗黙カメラモデルが2つの逆撮像タスクに与える影響を実演する。
論文 参考訳(メタデータ) (2023-04-25T11:55:03Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
イベントカメラはバイオインスパイアされたセンサーで、ピクセルごとの強度の変化を非同期に捉える。
深層学習(DL)はこの新興分野に導入され、その可能性のマイニングに活発な研究努力にインスピレーションを与えている。
論文 参考訳(メタデータ) (2023-02-17T14:19:28Z) - PRNU Based Source Camera Identification for Webcam and Smartphone Videos [137.6408511310322]
このコミュニケーションは、Webカメラ/スマートフォンビデオのソースカメラ(SCI: Source Camera Identification)を特定するためにカメラセンサ指紋を使用する画像法医学の応用に関するものである。
論文 参考訳(メタデータ) (2022-01-27T18:57:14Z) - Video Camera Identification from Sensor Pattern Noise with a Constrained
ConvNet [7.229968041355052]
本稿では,ビデオフレームから抽出したカメラ固有のノイズパターンに基づいて,映像のソースカメラを識別する手法を提案する。
本システムは,映像フレームを個別に分類し,多数決によりソースカメラの識別を行うように設計されている。
この研究は、子どもの性的虐待に対する法医学に焦点を当てたEUが支援するプロジェクト4NSEEKの一部です。
論文 参考訳(メタデータ) (2020-12-11T12:17:30Z) - The Forchheim Image Database for Camera Identification in the Wild [10.091921099426294]
Forchheim Image Database (FODB)は、27台のスマートフォンカメラで143シーンの23,000枚以上の画像で構成されている。
各画像は、オリジナルのカメラネイティブバージョンと、ソーシャルネットワークから5つのコピーの6つの異なる品質で提供される。
汎用EfficientNetは、クリーン画像と圧縮画像の両方で、いくつかの専門のCNNを著しく上回っている。
論文 参考訳(メタデータ) (2020-11-04T11:54:54Z) - A leak in PRNU based source identification. Questioning fingerprint
uniqueness [75.33542585238497]
Photo Response Non-Uniformity (PRNU) は、画像ソース属性タスクにおいて最も効果的なトレースであると考えられている。
近年のデバイスは、PRNUノイズの識別性を低下させる非特異なアーティファクトを導入する可能性がある。
誤報率の主な原因は、特定のカメラモデル、ファームウェア、画像の内容に直接関連しないことを示す。
論文 参考訳(メタデータ) (2020-09-10T14:18:38Z) - Device-based Image Matching with Similarity Learning by Convolutional
Neural Networks that Exploit the Underlying Camera Sensor Pattern Noise [6.6602878519516135]
本稿では,ある画像が同一のソースカメラを持つ可能性を定量化する2部ネットワークを提案する。
我々の知る限りでは、デバイスベースの画像マッチングの課題に対処する最初の人物である。
この研究はEUが支援する4NSEEKプロジェクトの一部であり、児童性的虐待に対する法医学に関するものである。
論文 参考訳(メタデータ) (2020-04-23T20:03:40Z) - Camera Trace Erasing [86.15997461603568]
我々は、トレースベースの法医学的手法の弱点を明らかにするために、新しい低レベル視覚問題であるカメラトレース消去に対処する。
そこで我々は,ネットワークトレーニングのためのSiameseアーキテクチャに基づいて,新たなハイブリッドロスを設計したSiamese Trace Erasing (SiamTE)を提案する。
論文 参考訳(メタデータ) (2020-03-16T00:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。