Pavement Fatigue Crack Detection and Severity Classification Based on Convolutional Neural Network
- URL: http://arxiv.org/abs/2407.16021v1
- Date: Mon, 22 Jul 2024 19:56:03 GMT
- Title: Pavement Fatigue Crack Detection and Severity Classification Based on Convolutional Neural Network
- Authors: Zhen Wang, Dylan G. Ildefonzo, Linbing Wang,
- Abstract summary: Fatigue cracking, also known as alligator cracking, is one of the common distresses of asphalt pavement.
A novel deep convolutional neural network that can achieve two objectives is proposed.
- Score: 8.233892677749276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the varying intensity of pavement cracks, the complexity of topological structure, and the noise of texture background, image classification for asphalt pavement cracking has proven to be a challenging problem. Fatigue cracking, also known as alligator cracking, is one of the common distresses of asphalt pavement. It is thus important to detect and monitor the condition of alligator cracking on roadway pavements. Most research in this area has typically focused on pixel-level detection of cracking using limited datasets. A novel deep convolutional neural network that can achieve two objectives is proposed. The first objective of the proposed neural network is to classify presence of fatigue cracking based on pavement surface images. The second objective is to classify the fatigue cracking severity level based on the Distress Identification Manual (DIM) standard. In this paper, a databank of 4484 high-resolution pavement surface images is established in which images are taken locally in the Town of Blacksburg, Virginia, USA. In the data pre-preparation, over 4000 images are labeled into 4 categories manually according to DIM standards. A four-layer convolutional neural network model is then built to achieve the goal of classification of images by pavement crack severity category. The trained model reached the highest accuracy among all existing methods. After only 30 epochs of training, the model achieved a crack existence classification accuracy of 96.23% and a severity level classification accuracy of 96.74%. After 20 epochs of training, the model achieved a pavement marking presence classification accuracy of 97.64%.
Related papers
- ENSTRECT: A Stage-based Approach to 2.5D Structural Damage Detection [0.0]
ENSTRECT is a stage-based approach designed to accomplish 2.5D structural damage detection.
With a localization tolerance of 4cm, ENSTRECT can achieve IoUs of over 90% for cracks, 82% for corrosion, and 41% for spalling.
arXiv Detail & Related papers (2024-01-06T20:39:20Z) - BAND-2k: Banding Artifact Noticeable Database for Banding Detection and
Quality Assessment [52.1640725073183]
Banding, also known as staircase-like contours, frequently occurs in flat areas of images/videos processed by the compression or quantization algorithms.
We build the largest banding IQA database so far, named Banding Artifact Noticeable Database (BAND-2k), which consists of 2,000 banding images.
A dual convolutional neural network is employed to concurrently learn the feature representation from the high-frequency and low-frequency maps.
arXiv Detail & Related papers (2023-11-29T15:56:31Z) - Convolutional neural networks for crack detection on flexible road
pavements [0.0]
This study performs a comparison of six state-of-the-art convolutional neural network models for the purpose of crack detection.
The highest recorded accuracy was 98%, achieved by the ResNet and VGG16 models.
arXiv Detail & Related papers (2023-04-06T08:46:30Z) - Unsupervised crack detection on complex stone masonry surfaces [0.0]
In this article a crack detection methodology for stone masonry walls is presented.
In the proposed approach, crack detection is approached as an unsupervised anomaly detection problem on RGB (Red Green Blue) image patches.
arXiv Detail & Related papers (2023-03-31T12:07:23Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Enhancing Fine-Grained Classification for Low Resolution Images [97.82441158440527]
Low resolution images suffer from the inherent challenge of limited information content and the absence of fine details useful for sub-category classification.
This research proposes a novel attribute-assisted loss, which utilizes ancillary information to learn discriminative features for classification.
The proposed loss function enables a model to learn class-specific discriminative features, while incorporating attribute-level separability.
arXiv Detail & Related papers (2021-05-01T13:19:02Z) - An Efficient and Scalable Deep Learning Approach for Road Damage
Detection [0.0]
This paper introduces a deep learning-based surveying scheme to analyze the image-based distress data in real-time.
A database consisting of a diverse population of crack distress types such as longitudinal, transverse, and alligator cracks is used.
Proposed models, resulted in F1-scores, ranging from 52% to 56%, and average inference time from 178-10 images per second.
arXiv Detail & Related papers (2020-11-18T23:05:41Z) - Detection Of Concrete Cracks using Dual-channel Deep Convolutional
Network [0.0]
This study proposes a crack detection method based on deep convolutional neural network (CNN) for detection of concrete cracks.
A database of 3200 labelled images with concrete cracks has been created, where the contrast, lighting conditions, orientations and severity of the cracks were extremely variable.
We have designed a dual-channel deep CNN which shows high accuracy ( 92.25%) as well as robustness in finding concrete cracks in realis-tic situations.
arXiv Detail & Related papers (2020-09-22T15:17:02Z) - Background Splitting: Finding Rare Classes in a Sea of Background [55.03789745276442]
We focus on the real-world problem of training accurate deep models for image classification of a small number of rare categories.
In these scenarios, almost all images belong to the background category in the dataset (>95% of the dataset is background)
We demonstrate that both standard fine-tuning approaches and state-of-the-art approaches for training on imbalanced datasets do not produce accurate deep models in the presence of this extreme imbalance.
arXiv Detail & Related papers (2020-08-28T23:05:15Z) - Deep learning for lithological classification of carbonate rock micro-CT
images [52.77024349608834]
This work intends to present an application of deep learning techniques to identify patterns in Brazilian pre-salt carbonate rock microtomographic images.
Four convolutional neural network models were proposed.
According to accuracy, Model 2 trained on resized images achieved the best results, reaching an average of 75.54% for the first evaluation approach and an average of 81.33% for the second.
arXiv Detail & Related papers (2020-07-30T19:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.