Leveraging Large Language Models to Geolocate Linguistic Variations in Social Media Posts
- URL: http://arxiv.org/abs/2407.16047v1
- Date: Mon, 22 Jul 2024 20:54:35 GMT
- Title: Leveraging Large Language Models to Geolocate Linguistic Variations in Social Media Posts
- Authors: Davide Savarro, Davide Zago, Stefano Zoia,
- Abstract summary: We address the GeoLingIt challenge of geolocalizing tweets written in Italian by leveraging large language models (LLMs)
Our approach involves fine-tuning pre-trained LLMs to simultaneously predict these geolocalization aspects.
This work is conducted as part of the Large Language Models course at the Bertinoro International Spring School 2024.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geolocalization of social media content is the task of determining the geographical location of a user based on textual data, that may show linguistic variations and informal language. In this project, we address the GeoLingIt challenge of geolocalizing tweets written in Italian by leveraging large language models (LLMs). GeoLingIt requires the prediction of both the region and the precise coordinates of the tweet. Our approach involves fine-tuning pre-trained LLMs to simultaneously predict these geolocalization aspects. By integrating innovative methodologies, we enhance the models' ability to understand the nuances of Italian social media text to improve the state-of-the-art in this domain. This work is conducted as part of the Large Language Models course at the Bertinoro International Spring School 2024. We make our code publicly available on GitHub https://github.com/dawoz/geolingit-biss2024.
Related papers
- GeoReasoner: Reasoning On Geospatially Grounded Context For Natural Language Understanding [0.32885740436059047]
GeoReasoner is a language model capable of reasoning on geospatially grounded natural language.
It first leverages Large Language Models to generate a comprehensive location description based on linguistic inferences and distance information.
It also encodes direction and distance information into spatial embedding via treating them as pseudo-sentences.
arXiv Detail & Related papers (2024-08-21T06:35:21Z) - Where on Earth Do Users Say They Are?: Geo-Entity Linking for Noisy Multilingual User Input [2.516307239032451]
We present a method which represents real-world locations as averaged embeddings from labeled user-input location names.
We show that our approach improves geo-entity linking on a global and multilingual social media dataset.
arXiv Detail & Related papers (2024-04-29T15:18:33Z) - GeoLM: Empowering Language Models for Geospatially Grounded Language
Understanding [45.36562604939258]
This paper introduces GeoLM, a language model that enhances the understanding of geo-entities in natural language.
We demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing.
arXiv Detail & Related papers (2023-10-23T01:20:01Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
Large language models (LLMs) have achieved great success in general domains of natural language processing.
We present the first-ever LLM in geoscience, K2, alongside a suite of resources developed to further promote LLM research within geoscience.
arXiv Detail & Related papers (2023-06-08T09:29:05Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - Geographic Adaptation of Pretrained Language Models [29.81557992080902]
We introduce geoadaptation, an intermediate training step that couples language modeling with geolocation prediction in a multi-task learning setup.
We show that the effectiveness of geoadaptation stems from its ability to geographically retrofit the representation space of the pretrained language models.
arXiv Detail & Related papers (2022-03-16T11:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.