GeoReasoner: Reasoning On Geospatially Grounded Context For Natural Language Understanding
- URL: http://arxiv.org/abs/2408.11366v1
- Date: Wed, 21 Aug 2024 06:35:21 GMT
- Title: GeoReasoner: Reasoning On Geospatially Grounded Context For Natural Language Understanding
- Authors: Yibo Yan, Joey Lee,
- Abstract summary: GeoReasoner is a language model capable of reasoning on geospatially grounded natural language.
It first leverages Large Language Models to generate a comprehensive location description based on linguistic inferences and distance information.
It also encodes direction and distance information into spatial embedding via treating them as pseudo-sentences.
- Score: 0.32885740436059047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human reading and communication, individuals tend to engage in geospatial reasoning, which involves recognizing geographic entities and making informed inferences about their interrelationships. To mimic such cognitive process, current methods either utilize conventional natural language understanding toolkits, or directly apply models pretrained on geo-related natural language corpora. However, these methods face two significant challenges: i) they do not generalize well to unseen geospatial scenarios, and ii) they overlook the importance of integrating geospatial context from geographical databases with linguistic information from the Internet. To handle these challenges, we propose GeoReasoner, a language model capable of reasoning on geospatially grounded natural language. Specifically, it first leverages Large Language Models (LLMs) to generate a comprehensive location description based on linguistic and geospatial information. It also encodes direction and distance information into spatial embedding via treating them as pseudo-sentences. Consequently, the model is trained on both anchor-level and neighbor-level inputs to learn geo-entity representation. Extensive experimental results demonstrate GeoReasoner's superiority in three tasks: toponym recognition, toponym linking, and geo-entity typing, compared to the state-of-the-art baselines.
Related papers
- GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP)
We specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset.
We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus.
Then we fine-tune the model with 1 million pairs of instruction-tuning
arXiv Detail & Related papers (2023-12-31T09:22:54Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
Navigating drones through natural language commands remains challenging due to the dearth of accessible multi-modal datasets.
We introduce GeoText-1652, a new natural language-guided geo-localization benchmark.
This dataset is systematically constructed through an interactive human-computer process.
arXiv Detail & Related papers (2023-11-21T17:52:30Z) - GeoLM: Empowering Language Models for Geospatially Grounded Language
Understanding [45.36562604939258]
This paper introduces GeoLM, a language model that enhances the understanding of geo-entities in natural language.
We demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing.
arXiv Detail & Related papers (2023-10-23T01:20:01Z) - Are Large Language Models Geospatially Knowledgeable? [21.401931052512595]
This paper investigates the extent of geospatial knowledge, awareness, and reasoning abilities encoded within Large Language Models (LLM)
With a focus on autoregressive language models, we devise experimental approaches related to (i) probing LLMs for geo-coordinates to assess geospatial knowledge, (ii) using geospatial and non-geospatial prepositions to gauge their geospatial awareness, and (iii) utilizing a multidimensional scaling (MDS) experiment to assess the models' geospatial reasoning capabilities.
arXiv Detail & Related papers (2023-10-09T17:20:11Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
Large language models (LLMs) have achieved great success in general domains of natural language processing.
We present the first-ever LLM in geoscience, K2, alongside a suite of resources developed to further promote LLM research within geoscience.
arXiv Detail & Related papers (2023-06-08T09:29:05Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - SpaBERT: A Pretrained Language Model from Geographic Data for Geo-Entity
Representation [25.52363878314735]
SpaBERT provides a general-purpose geo-entity representation based on neighboring entities in geospatial data.
SpaBERT is pretrained with masked language modeling and masked entity prediction tasks.
We apply SpaBERT to two downstream tasks: geo-entity typing and geo-entity linking.
arXiv Detail & Related papers (2022-10-21T19:42:32Z) - Geographic Adaptation of Pretrained Language Models [29.81557992080902]
We introduce geoadaptation, an intermediate training step that couples language modeling with geolocation prediction in a multi-task learning setup.
We show that the effectiveness of geoadaptation stems from its ability to geographically retrofit the representation space of the pretrained language models.
arXiv Detail & Related papers (2022-03-16T11:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.