論文の概要: HIERVAR: A Hierarchical Feature Selection Method for Time Series Analysis
- arxiv url: http://arxiv.org/abs/2407.16048v1
- Date: Mon, 22 Jul 2024 20:55:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 19:15:20.059293
- Title: HIERVAR: A Hierarchical Feature Selection Method for Time Series Analysis
- Title(参考訳): HIERVAR:時系列解析のための階層的特徴選択法
- Authors: Alireza Keshavarzian, Shahrokh Valaee,
- Abstract要約: 時系列分類は、様々な領域にまたがる重要かつ複雑な課題である。
本稿では,ANOVA分散解析による新しい階層的特徴選択法を提案する。
本手法は精度を保ちながら,特徴量を94%以上削減する。
- 参考スコア(独自算出の注目度): 22.285570102169356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series classification stands as a pivotal and intricate challenge across various domains, including finance, healthcare, and industrial systems. In contemporary research, there has been a notable upsurge in exploring feature extraction through random sampling. Unlike deep convolutional networks, these methods sidestep elaborate training procedures, yet they often necessitate generating a surplus of features to comprehensively encapsulate time series nuances. Consequently, some features may lack relevance to labels or exhibit multi-collinearity with others. In this paper, we propose a novel hierarchical feature selection method aided by ANOVA variance analysis to address this challenge. Through meticulous experimentation, we demonstrate that our method substantially reduces features by over 94% while preserving accuracy -- a significant advancement in the field of time series analysis and feature selection.
- Abstract(参考訳): 時系列分類は、金融、医療、産業システムを含む様々な分野において、重要かつ複雑な課題である。
現代の研究では、ランダムサンプリングによる特徴抽出の探索が注目されている。
深層畳み込みネットワークとは異なり、これらの手法は精巧な訓練手順を踏襲するが、しばしば時系列のニュアンスを包括的にカプセル化するために余剰の機能を生成する必要がある。
結果として、いくつかの特徴はラベルとの関係に欠けるかもしれないし、他の特徴と多色性を示すかもしれない。
本稿では,ANOVA分散解析による新しい階層的特徴選択手法を提案する。
厳密な実験を通じて,本手法は,時系列解析や特徴選択の分野において,精度を保ちながら,特徴量を94%以上削減できることを実証した。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Unsupervised Multi-modal Feature Alignment for Time Series
Representation Learning [20.655943795843037]
異なるモダリティから符号化された時系列表現の整合と結合に焦点を当てた革新的なアプローチを導入する。
複数のモーダルから特徴を融合させる従来の手法とは対照的に,提案手法は単一時系列エンコーダを保持することにより,ニューラルアーキテクチャを単純化する。
我々のアプローチは、様々な下流タスクにまたがる既存の最先端のURLメソッドよりも優れています。
論文 参考訳(メタデータ) (2023-12-09T22:31:20Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - An Unsupervised Short- and Long-Term Mask Representation for
Multivariate Time Series Anomaly Detection [2.387411589813086]
本稿では,教師なし短時間・長期マスク表現学習(SLMR)に基づく異常検出手法を提案する。
実験により,本手法の性能は,実世界の3つのデータセットにおいて,他の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-19T09:34:11Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
本稿では,時系列をネットワークに変換する既存のマッピング手法について概観する。
我々は、主要な概念的アプローチを説明し、権威的な参照を提供し、統一された表記法と言語におけるそれらの利点と限界について洞察を与える。
ごく最近の研究だが、この研究領域には大きな可能性を秘めており、今後の研究の道を開くことを目的としている。
論文 参考訳(メタデータ) (2021-10-11T13:33:18Z) - Multi-Time Attention Networks for Irregularly Sampled Time Series [18.224344440110862]
不規則サンプリングは多くの時系列モデリングアプリケーションで発生する。
我々は,この設定のための新しいディープラーニングフレームワークを提案し,これをマルチ時間注意ネットワークと呼ぶ。
その結果,我々のアプローチは,ベースラインや最近提案されたモデルと同等かそれ以上の性能を示すことができた。
論文 参考訳(メタデータ) (2021-01-25T18:57:42Z) - Feature Selection for Huge Data via Minipatch Learning [0.0]
安定ミニパッチ選択(STAMPS)と適応STAMPSを提案する。
STAMPSは、データの観測と特徴の両方の小さな(適応性の高い)ランダムなサブセットに基づいて訓練された基本特徴セレクタの選択イベントのアンサンブルを構築するメタアルゴリズムである。
われわれのアプローチは一般的であり、様々な機能選択戦略や機械学習技術に応用できる。
論文 参考訳(メタデータ) (2020-10-16T17:41:08Z) - Supervised Feature Subset Selection and Feature Ranking for Multivariate
Time Series without Feature Extraction [78.84356269545157]
MTS分類のための教師付き特徴ランキングと特徴サブセット選択アルゴリズムを導入する。
MTSの既存の教師なし特徴選択アルゴリズムとは異なり、我々の手法は時系列から一次元特徴ベクトルを生成するために特徴抽出ステップを必要としない。
論文 参考訳(メタデータ) (2020-05-01T07:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。