HIERVAR: A Hierarchical Feature Selection Method for Time Series Analysis
- URL: http://arxiv.org/abs/2407.16048v1
- Date: Mon, 22 Jul 2024 20:55:13 GMT
- Title: HIERVAR: A Hierarchical Feature Selection Method for Time Series Analysis
- Authors: Alireza Keshavarzian, Shahrokh Valaee,
- Abstract summary: Time series classification stands as a pivotal and intricate challenge across various domains.
We propose a novel hierarchical feature selection method aided by ANOVA variance analysis.
Our method substantially reduces features by over 94% while preserving accuracy.
- Score: 22.285570102169356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series classification stands as a pivotal and intricate challenge across various domains, including finance, healthcare, and industrial systems. In contemporary research, there has been a notable upsurge in exploring feature extraction through random sampling. Unlike deep convolutional networks, these methods sidestep elaborate training procedures, yet they often necessitate generating a surplus of features to comprehensively encapsulate time series nuances. Consequently, some features may lack relevance to labels or exhibit multi-collinearity with others. In this paper, we propose a novel hierarchical feature selection method aided by ANOVA variance analysis to address this challenge. Through meticulous experimentation, we demonstrate that our method substantially reduces features by over 94% while preserving accuracy -- a significant advancement in the field of time series analysis and feature selection.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Unsupervised Multi-modal Feature Alignment for Time Series
Representation Learning [20.655943795843037]
We introduce an innovative approach that focuses on aligning and binding time series representations encoded from different modalities.
In contrast to conventional methods that fuse features from multiple modalities, our proposed approach simplifies the neural architecture by retaining a single time series encoder.
Our approach outperforms existing state-of-the-art URL methods across diverse downstream tasks.
arXiv Detail & Related papers (2023-12-09T22:31:20Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - An Unsupervised Short- and Long-Term Mask Representation for
Multivariate Time Series Anomaly Detection [2.387411589813086]
This paper proposes an anomaly detection method based on unsupervised Short- and Long-term Mask Representation learning (SLMR)
Experiments show that the performance of our method outperforms other state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2022-08-19T09:34:11Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - Multi-Time Attention Networks for Irregularly Sampled Time Series [18.224344440110862]
Irregular sampling occurs in many time series modeling applications.
We propose a new deep learning framework for this setting that we call Multi-Time Attention Networks.
Our results show that our approach performs as well or better than a range of baseline and recently proposed models.
arXiv Detail & Related papers (2021-01-25T18:57:42Z) - Feature Selection for Huge Data via Minipatch Learning [0.0]
We propose Stable Minipatch Selection (STAMPS) and Adaptive STAMPS.
STAMPS are meta-algorithms that build ensembles of selection events of base feature selectors trained on tiny, (ly-adaptive) random subsets of both the observations and features of the data.
Our approaches are general and can be employed with a variety of existing feature selection strategies and machine learning techniques.
arXiv Detail & Related papers (2020-10-16T17:41:08Z) - Supervised Feature Subset Selection and Feature Ranking for Multivariate
Time Series without Feature Extraction [78.84356269545157]
We introduce supervised feature ranking and feature subset selection algorithms for MTS classification.
Unlike most existing supervised/unsupervised feature selection algorithms for MTS our techniques do not require a feature extraction step to generate a one-dimensional feature vector from the time series.
arXiv Detail & Related papers (2020-05-01T07:46:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.