Diffusion Transformer Captures Spatial-Temporal Dependencies: A Theory for Gaussian Process Data
- URL: http://arxiv.org/abs/2407.16134v1
- Date: Tue, 23 Jul 2024 02:42:43 GMT
- Title: Diffusion Transformer Captures Spatial-Temporal Dependencies: A Theory for Gaussian Process Data
- Authors: Hengyu Fu, Zehao Dou, Jiawei Guo, Mengdi Wang, Minshuo Chen,
- Abstract summary: Diffusion Transformer, the backbone of Sora for video generation, successfully scales the capacity of diffusion models.
We make the first theoretical step towards bridging diffusion transformers for capturing spatial-temporal dependencies.
We highlight how the spatial-temporal dependencies are captured and affect learning efficiency.
- Score: 39.41800375686212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Transformer, the backbone of Sora for video generation, successfully scales the capacity of diffusion models, pioneering new avenues for high-fidelity sequential data generation. Unlike static data such as images, sequential data consists of consecutive data frames indexed by time, exhibiting rich spatial and temporal dependencies. These dependencies represent the underlying dynamic model and are critical to validate the generated data. In this paper, we make the first theoretical step towards bridging diffusion transformers for capturing spatial-temporal dependencies. Specifically, we establish score approximation and distribution estimation guarantees of diffusion transformers for learning Gaussian process data with covariance functions of various decay patterns. We highlight how the spatial-temporal dependencies are captured and affect learning efficiency. Our study proposes a novel transformer approximation theory, where the transformer acts to unroll an algorithm. We support our theoretical results by numerical experiments, providing strong evidence that spatial-temporal dependencies are captured within attention layers, aligning with our approximation theory.
Related papers
- On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
We study the generation process as a correlation machine''
We show that low frequencies emerge earlier in the generation process, where the denoising basis vectors are more aligned to the true data with a rate depending on their eigenvalues.
This model allows us to show that the linear diffusion model converges in mean to the leading eigenvector of the underlying data, similarly to the prevalent power iteration method.
arXiv Detail & Related papers (2024-10-16T07:33:12Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
We study generative diffusion models in the regime where the dimension of space and the number of data are large.
Our analysis reveals three distinct dynamical regimes during the backward generative diffusion process.
The dependence of the collapse time on the dimension and number of data provides a thorough characterization of the curse of dimensionality for diffusion models.
arXiv Detail & Related papers (2024-02-28T17:19:26Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds.
We propose formulating PCR as a denoising diffusion probabilistic process, mapping noisy transformations to the ground truth.
Our experiments showcase the effectiveness of our DiffusionPCR, yielding state-of-the-art registration recall rates (95.3%/81.6%) on 3D and 3DLoMatch.
arXiv Detail & Related papers (2023-12-05T18:59:41Z) - Streaming Factor Trajectory Learning for Temporal Tensor Decomposition [33.18423605559094]
We propose Streaming Factor Trajectory Learning for temporal tensor decomposition.
We use Gaussian processes (GPs) to model the trajectory of factors so as to flexibly estimate their temporal evolution.
We have shown the advantage of SFTL in both synthetic tasks and real-world applications.
arXiv Detail & Related papers (2023-10-25T21:58:52Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Real-time Inference and Extrapolation via a Diffusion-inspired Temporal
Transformer Operator (DiTTO) [1.5728609542259502]
We propose an operator learning method to solve time-dependent partial differential equations (PDEs) continuously and with extrapolation in time without any temporal discretization.
The proposed method, named Diffusion-inspired Temporal Transformer Operator (DiTTO), is inspired by latent diffusion models and their conditioning mechanism.
We demonstrate its extrapolation capability on a climate problem by estimating the temperature around the globe for several years, and also in modeling hypersonic flows around a double-cone.
arXiv Detail & Related papers (2023-07-18T08:45:54Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A Variational Perspective on Diffusion-Based Generative Models and Score
Matching [8.93483643820767]
We derive a variational framework for likelihood estimation for continuous-time generative diffusion.
We show that minimizing the score-matching loss is equivalent to maximizing a lower bound of the likelihood of the plug-in reverse SDE.
arXiv Detail & Related papers (2021-06-05T05:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.