Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction
- URL: http://arxiv.org/abs/2407.16181v1
- Date: Tue, 23 Jul 2024 04:57:03 GMT
- Title: Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction
- Authors: Jinwook Park, Kangil Kim,
- Abstract summary: Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.
In unsupervised parsing benchmark tests, our method significantly improves performance while reducing bias toward overly simplistic parses.
- Score: 2.3020018305241337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) $\textit{structural optimization ambiguity}$ that arbitrarily selects one among structurally ambiguous optimal grammars despite the specific preference of gold parses, and 2) $\textit{structural simplicity bias}$ that leads a model to underutilize rules to compose parse trees. These challenges subject unsupervised neural grammar induction (UNGI) to inevitable prediction errors, high variance, and the necessity for extensive grammars to achieve accurate predictions. This paper tackles these issues, offering a comprehensive analysis of their origins. As a solution, we introduce $\textit{sentence-wise parse-focusing}$ to reduce the parse pool per sentence for loss evaluation, using the structural bias from pre-trained parsers on the same dataset. In unsupervised parsing benchmark tests, our method significantly improves performance while effectively reducing variance and bias toward overly simplistic parses. Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.
Related papers
- On Eliciting Syntax from Language Models via Hashing [19.872554909401316]
Unsupervised parsing aims to infer syntactic structure from raw text.
In this paper, we explore the possibility of leveraging this capability to deduce parsing trees from raw text.
We show that our method is effective and efficient enough to acquire high-quality parsing trees from pre-trained language models at a low cost.
arXiv Detail & Related papers (2024-10-05T08:06:19Z) - Incremental Context-free Grammar Inference in Black Box Settings [17.601446198181048]
Black-box context-free grammar inference is a significant challenge in many practical settings.
We propose a novel method that segments example strings into smaller units and incrementally infers the grammar.
Our approach, named Kedavra, has demonstrated superior grammar quality (enhanced precision and recall), faster runtime, and improved readability through empirical comparison.
arXiv Detail & Related papers (2024-08-29T17:00:38Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - On graph-based reentrancy-free semantic parsing [5.228711636020665]
We propose a graph-based approach for semantic parsing that resolves two problems observed in the literature.
We prove that both MAP inference and latent tag anchoring (required for weakly-supervised learning) are NP-hard problems.
We propose two optimization algorithms based on constraint smoothing and conditional gradient to approximately solve these inference problems.
arXiv Detail & Related papers (2023-02-15T14:14:09Z) - Categorizing Semantic Representations for Neural Machine Translation [53.88794787958174]
We introduce categorization to the source contextualized representations.
The main idea is to enhance generalization by reducing sparsity and overfitting.
Experiments on a dedicated MT dataset show that our method reduces compositional generalization error rates by 24% error reduction.
arXiv Detail & Related papers (2022-10-13T04:07:08Z) - A Neural Model for Regular Grammar Induction [8.873449722727026]
We treat grammars as a model of computation and propose a novel neural approach to induction of regular grammars from positive and negative examples.
Our model is fully explainable, its intermediate results are directly interpretable as partial parses, and it can be used to learn arbitrary regular grammars when provided with sufficient data.
arXiv Detail & Related papers (2022-09-23T14:53:23Z) - Grounded Graph Decoding Improves Compositional Generalization in
Question Answering [68.72605660152101]
Question answering models struggle to generalize to novel compositions of training patterns, such as longer sequences or more complex test structures.
We propose Grounded Graph Decoding, a method to improve compositional generalization of language representations by grounding structured predictions with an attention mechanism.
Our model significantly outperforms state-of-the-art baselines on the Compositional Freebase Questions (CFQ) dataset, a challenging benchmark for compositional generalization in question answering.
arXiv Detail & Related papers (2021-11-05T17:50:14Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
We analyze zero-shot learning by paraphrasing training examples of canonical utterances and programs from a grammar.
We propose bridging these gaps using improved grammars, stronger paraphrasers, and efficient learning methods.
Our model achieves strong performance on two semantic parsing benchmarks (Scholar, Geo) with zero labeled data.
arXiv Detail & Related papers (2021-10-15T21:41:16Z) - Extracting Grammars from a Neural Network Parser for Anomaly Detection
in Unknown Formats [79.6676793507792]
Reinforcement learning has recently shown promise as a technique for training an artificial neural network to parse sentences in some unknown format.
This paper presents procedures for extracting production rules from the neural network, and for using these rules to determine whether a given sentence is nominal or anomalous.
arXiv Detail & Related papers (2021-07-30T23:10:24Z) - Narrative Incoherence Detection [76.43894977558811]
We propose the task of narrative incoherence detection as a new arena for inter-sentential semantic understanding.
Given a multi-sentence narrative, decide whether there exist any semantic discrepancies in the narrative flow.
arXiv Detail & Related papers (2020-12-21T07:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.