EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles
- URL: http://arxiv.org/abs/2407.16189v1
- Date: Tue, 23 Jul 2024 05:31:05 GMT
- Title: EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles
- Authors: Zicheng Pan, Xiaohan Yu, Yongsheng Gao,
- Abstract summary: Source-free domain adaptation (SFDA) aims to transfer knowledge from a labelled source domain to an unlabelled target domain.
A major challenge in SFDA is deriving accurate categorical information for the target domain.
We introduce a novel ETF-Informed Attention Network (EIANet) to separate class prototypes.
- Score: 15.19374752514876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free domain adaptation (SFDA) aims to transfer knowledge from a labelled source domain to an unlabelled target domain. A major challenge in SFDA is deriving accurate categorical information for the target domain, especially when sample embeddings from different classes appear similar. This issue is particularly pronounced in fine-grained visual categorization tasks, where inter-class differences are subtle. To overcome this challenge, we introduce a novel ETF-Informed Attention Network (EIANet) to separate class prototypes by utilizing attention and neural collapse principles. More specifically, EIANet employs a simplex Equiangular Tight Frame (ETF) classifier in conjunction with an attention mechanism, facilitating the model to focus on discriminative features and ensuring maximum class prototype separation. This innovative approach effectively enlarges the feature difference between different classes in the latent space by locating salient regions, thereby preventing the misclassification of similar but distinct category samples and providing more accurate categorical information to guide the fine-tuning process on the target domain. Experimental results across four SFDA datasets validate EIANet's state-of-the-art performance. Code is available at: https://github.com/zichengpan/EIANet.
Related papers
- Upcycling Models under Domain and Category Shift [95.22147885947732]
We introduce an innovative global and local clustering learning technique (GLC)
We design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes.
Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8% on the VisDA benchmark.
arXiv Detail & Related papers (2023-03-13T13:44:04Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - High-level semantic feature matters few-shot unsupervised domain
adaptation [15.12545632709954]
We propose a novel task-specific semantic feature learning method (TSECS) for FS-UDA.
TSECS learns high-level semantic features for image-to-class similarity measurement.
We show that the proposed method significantly outperforms SOTA methods in FS-UDA by a large margin.
arXiv Detail & Related papers (2023-01-05T08:39:52Z) - Continual Unsupervised Domain Adaptation for Semantic Segmentation using
a Class-Specific Transfer [9.46677024179954]
segmentation models do not generalize to unseen domains.
We propose a light-weight style transfer framework that incorporates two class-conditional AdaIN layers.
We extensively validate our approach on a synthetic sequence and further propose a challenging sequence consisting of real domains.
arXiv Detail & Related papers (2022-08-12T21:30:49Z) - Semantic Concentration for Domain Adaptation [23.706231329913113]
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain.
A mainstream of DA methods is to align the feature distributions of the two domains.
We propose Semantic Concentration for Domain Adaptation to encourage the model to concentrate on the most principal features.
arXiv Detail & Related papers (2021-08-12T13:04:36Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
We propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning.
Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples.
arXiv Detail & Related papers (2019-04-21T13:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.