Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
- URL: http://arxiv.org/abs/2407.16223v1
- Date: Tue, 23 Jul 2024 07:02:01 GMT
- Title: Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
- Authors: Romeo Valentin, Sydney M. Katz, Joonghyun Lee, Don Walker, Matthew Sorgenfrei, Mykel J. Kochenderfer,
- Abstract summary: This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time.
We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator.
We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios.
- Score: 30.85393323542915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50\% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.
Related papers
- From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Finite Sample Confidence Regions for Linear Regression Parameters Using
Arbitrary Predictors [1.6860963320038902]
We explore a novel methodology for constructing confidence regions for parameters of linear models, using predictions from any arbitrary predictor.
The derived confidence regions can be cast as constraints within a Mixed Linear Programming framework, enabling optimisation of linear objectives.
Unlike previous methods, the confidence region can be empty, which can be used for hypothesis testing.
arXiv Detail & Related papers (2024-01-27T00:15:48Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
We propose a method for building adaptive cross-conformal prediction intervals.
The resulting conformal prediction intervals exhibit a level of adaptivity akin to Bayesian credibility sets.
The potential applicability of the method is demonstrated in the context of surrogate modeling of an expensive-to-evaluate simulator of the clogging phenomenon in steam generators of nuclear reactors.
arXiv Detail & Related papers (2024-01-15T14:45:18Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
In machine learning, accurately predicting the probability that a specific input is correct is crucial for risk management.
We put forward a novel geometric-based approach for improving uncertainty estimations in machine learning models.
arXiv Detail & Related papers (2023-01-11T13:19:24Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.