Image Classification using Fuzzy Pooling in Convolutional Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2407.16268v1
- Date: Tue, 23 Jul 2024 08:18:04 GMT
- Title: Image Classification using Fuzzy Pooling in Convolutional Kolmogorov-Arnold Networks
- Authors: Ayan Igali, Pakizar Shamoi,
- Abstract summary: We present an approach that integrates Kolmogorov-Arnold Network (KAN) classification heads and Fuzzy Pooling into convolutional neural networks (CNNs)
Our comparative analysis demonstrates that the modified CNN architecture with KAN and Fuzzy Pooling achieves comparable or higher accuracy than traditional models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, deep learning models are increasingly required to be both interpretable and highly accurate. We present an approach that integrates Kolmogorov-Arnold Network (KAN) classification heads and Fuzzy Pooling into convolutional neural networks (CNNs). By utilizing the interpretability of KAN and the uncertainty handling capabilities of fuzzy logic, the integration shows potential for improved performance in image classification tasks. Our comparative analysis demonstrates that the modified CNN architecture with KAN and Fuzzy Pooling achieves comparable or higher accuracy than traditional models. The findings highlight the effectiveness of combining fuzzy logic and KAN to develop more interpretable and efficient deep learning models. Future work will aim to expand this approach across larger datasets.
Related papers
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - Bayesian Layer Graph Convolutioanl Network for Hyperspetral Image
Classification [24.91896527342631]
Graph convolutional network (GCN) based models have shown impressive performance.
Deep learning frameworks based on point estimation suffer from low generalization and inability to quantify the classification results uncertainty.
In this paper, we propose a Bayesian layer with Bayesian idea as an insertion layer into point estimation based neural networks.
A Generative Adversarial Network (GAN) is built to solve the sample imbalance problem of HSI dataset.
arXiv Detail & Related papers (2022-11-14T12:56:56Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Inference Graphs for CNN Interpretation [12.765543440576144]
Convolutional neural networks (CNNs) have achieved superior accuracy in many visual related tasks.
We propose to model the network hidden layers activity using probabilistic models.
We show that such graphs are useful for understanding the general inference process of a class, as well as explaining decisions the network makes regarding specific images.
arXiv Detail & Related papers (2021-10-20T13:56:09Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.