A new Linear Time Bi-level $\ell_{1,\infty}$ projection ; Application to the sparsification of auto-encoders neural networks
- URL: http://arxiv.org/abs/2407.16293v1
- Date: Tue, 23 Jul 2024 08:51:29 GMT
- Title: A new Linear Time Bi-level $\ell_{1,\infty}$ projection ; Application to the sparsification of auto-encoders neural networks
- Authors: Michel Barlaud, Guillaume Perez, Jean-Paul Marmorat,
- Abstract summary: We show that the time complexity for the $ell_1,infty$ norm is only $mathcalObig(n m big)$ for a matrix $ntimes m$.
Experiments show that our bi-level $ell_1,infty$ projection is $2.5$ times faster than the actual fastest algorithm.
- Score: 2.014710510332479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $\ell_{1,\infty}$ norm is an efficient-structured projection, but the complexity of the best algorithm is, unfortunately, $\mathcal{O}\big(n m \log(n m)\big)$ for a matrix $n\times m$.\\ In this paper, we propose a new bi-level projection method, for which we show that the time complexity for the $\ell_{1,\infty}$ norm is only $\mathcal{O}\big(n m \big)$ for a matrix $n\times m$. Moreover, we provide a new $\ell_{1,\infty}$ identity with mathematical proof and experimental validation. Experiments show that our bi-level $\ell_{1,\infty}$ projection is $2.5$ times faster than the actual fastest algorithm and provides the best sparsity while keeping the same accuracy in classification applications.
Related papers
- Learning and Computation of $Φ$-Equilibria at the Frontier of Tractability [85.07238533644636]
$Phi$-equilibria is a powerful and flexible framework at the heart of online learning and game theory.
We show that an efficient online algorithm incurs average $Phi$-regret at most $epsilon$ using $textpoly(d, k)/epsilon2$ rounds.
We also show nearly matching lower bounds in the online setting, thereby obtaining for the first time a family of deviations that captures the learnability of $Phi$-regret.
arXiv Detail & Related papers (2025-02-25T19:08:26Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Multi-level projection with exponential parallel speedup; Application to sparse auto-encoders neural networks [2.264332709661011]
We show that the time complexity for the $ell_1,infty$ norm is only $mathcalObig(n m big)$ for a matrix in $mathbbRntimes m$.
Experiments show that our projection is $2$ times faster than the actual fastest Euclidean algorithms.
arXiv Detail & Related papers (2024-05-03T13:21:49Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Near-Linear Time Projection onto the $\ell_{1,\infty}$ Ball; Application
to Sparse Autoencoders [12.010310883787911]
We introduce a new projection algorithm for the $ell_1,infty$ norm ball.
We show that both in the biological case and in the general case of sparsity that our method is the fastest.
arXiv Detail & Related papers (2023-07-19T08:47:41Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
We consider the sparsification of the attention problem.
For any super large feature dimension, we can reduce it down to the size nearly linear in length of sentence.
arXiv Detail & Related papers (2023-04-10T05:52:38Z) - Fast Attention Requires Bounded Entries [19.17278873525312]
inner product attention computation is a fundamental task for training large language models such as Transformer, GPT-1, BERT, GPT-2, GPT-3 and ChatGPT.
We investigate whether faster algorithms are possible by implicitly making use of the matrix $A$.
This gives a theoretical explanation for the phenomenon observed in practice that attention computation is much more efficient when the input matrices have smaller entries.
arXiv Detail & Related papers (2023-02-26T02:42:39Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Contextual Recommendations and Low-Regret Cutting-Plane Algorithms [49.91214213074933]
We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems.
We design novel cutting-plane algorithms with low "regret" -- the total distance between the true point $w*$ and the hyperplanes the separation oracle returns.
arXiv Detail & Related papers (2021-06-09T05:39:05Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
We consider the problem of learning a latent $k$-vertex simplex $KsubsetmathbbRdtimes n$, given access to $AinmathbbRdtimes n$.
We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $A$.
arXiv Detail & Related papers (2021-05-17T16:40:48Z) - On Efficient Low Distortion Ultrametric Embedding [18.227854382422112]
A widely-used method to preserve the underlying hierarchical structure of the data is to find an embedding of the data into a tree or an ultrametric.
In this paper, we provide a new algorithm which takes as input a set of points isometric in $mathbbRd2 (for universal constant $rho>1$) to output an ultrametric $Delta.
We show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.
arXiv Detail & Related papers (2020-08-15T11:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.