Evolutionary Prompt Design for LLM-Based Post-ASR Error Correction
- URL: http://arxiv.org/abs/2407.16370v1
- Date: Tue, 23 Jul 2024 10:38:49 GMT
- Title: Evolutionary Prompt Design for LLM-Based Post-ASR Error Correction
- Authors: Rithik Sachdev, Zhong-Qiu Wang, Chao-Han Huck Yang,
- Abstract summary: generative error correction (GEC) has emerged as a promising paradigm that can elevate the performance of modern automatic speech recognition (ASR) systems.
It is yet unknown whether the existing prompts are the most effective ones for the task of post-ASR error correction.
This paper first explores alternative prompts to identify an initial set of effective prompts, and then proposes to employ an evolutionary prompt optimization algorithm to refine the initial prompts.
- Score: 22.27432554538809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building upon the strength of modern large language models (LLMs), generative error correction (GEC) has emerged as a promising paradigm that can elevate the performance of modern automatic speech recognition (ASR) systems. One representative approach is to leverage in-context learning to prompt LLMs so that a better hypothesis can be generated by the LLMs based on a carefully-designed prompt and an $N$-best list of hypotheses produced by ASR systems. However, it is yet unknown whether the existing prompts are the most effective ones for the task of post-ASR error correction. In this context, this paper first explores alternative prompts to identify an initial set of effective prompts, and then proposes to employ an evolutionary prompt optimization algorithm to refine the initial prompts. Evaluations results on the CHiME-4 subset of the Task $1$ of the SLT $2024$ GenSEC challenge show the effectiveness and potential of the proposed algorithms.
Related papers
- MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - $\textit{LinkPrompt}$: Natural and Universal Adversarial Attacks on Prompt-based Language Models [13.416624729344477]
Prompt-based learning is a new language model training paradigm that adapts the Pre-trained Language Models (PLMs) to downstream tasks.
In this work, we develop $textitLinkPrompt$, an adversarial attack algorithm to generate adversarial triggers.
arXiv Detail & Related papers (2024-03-25T05:27:35Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generation is considered as a means to improve the trustworthiness of text generation from large language models.
In this work, we find that the insertion of even a short prefix to the prompt leads to the generation of outputs far away from factually correct answers.
We introduce a novel optimization technique called Gradient Guided Prompt Perturbation.
arXiv Detail & Related papers (2024-02-11T12:25:41Z) - Prompt Optimization via Adversarial In-Context Learning [51.18075178593142]
adv-ICL is implemented as a two-player game between a generator and a discriminator.
The generator tries to generate realistic enough output to fool the discriminator.
We show that adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques.
arXiv Detail & Related papers (2023-12-05T09:44:45Z) - Multi-stage Large Language Model Correction for Speech Recognition [10.995600950995021]
We propose a novel multi-stage approach that utilizes uncertainty estimation of ASR outputs and reasoning capability of large language models (LLMs)
Our experimental results demonstrate the effectiveness of the proposed method by showing 10% 20% relative improvement in WER over competitive ASR systems.
arXiv Detail & Related papers (2023-10-17T19:02:40Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - Generative Speech Recognition Error Correction with Large Language
Models and Task-Activating Prompting [32.70214938434769]
We explore the ability of large language models (LLMs) to act as speech recognition post-processors.
We evaluate different prompting schemes, both zero- and few-shot in-context learning, and a novel task activation prompting method.
We show that rescoring only by in-context learning with frozen LLMs achieves results that are competitive with rescoring by domain-tuned LMs.
arXiv Detail & Related papers (2023-09-27T13:36:03Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Leveraging Large Language Models for Exploiting ASR Uncertainty [16.740712975166407]
Large language models must either rely on off-the-shelf automatic speech recognition systems for transcription, or be equipped with an in-built speech modality.
We tackle speech-intent classification task, where a high word-error-rate can limit the LLM's ability to understand the spoken intent.
We propose prompting the LLM with an n-best list of ASR hypotheses instead of only the error-prone 1-best hypothesis.
arXiv Detail & Related papers (2023-09-09T17:02:33Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.