MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
- URL: http://arxiv.org/abs/2407.04118v1
- Date: Thu, 4 Jul 2024 18:39:59 GMT
- Title: MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
- Authors: Yuyan Chen, Zhihao Wen, Ge Fan, Zhengyu Chen, Wei Wu, Dayiheng Liu, Zhixu Li, Bang Liu, Yanghua Xiao,
- Abstract summary: We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
- Score: 73.7779735046424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt engineering, as an efficient and effective way to leverage Large Language Models (LLM), has drawn a lot of attention from the research community. The existing research primarily emphasizes the importance of adapting prompts to specific tasks, rather than specific LLMs. However, a good prompt is not solely defined by its wording, but also binds to the nature of the LLM in question. In this work, we first quantitatively demonstrate that different prompts should be adapted to different LLMs to enhance their capabilities across various downstream tasks in NLP. Then we novelly propose a model-adaptive prompt optimizer (MAPO) method that optimizes the original prompts for each specific LLM in downstream tasks. Extensive experiments indicate that the proposed method can effectively refine prompts for an LLM, leading to significant improvements over various downstream tasks.
Related papers
- Benchmarking Prompt Sensitivity in Large Language Models [13.986971540998258]
Large language Models (LLMs) are highly sensitive to variations in prompt formulation.
This paper introduces a new task, Prompt Sensitivity Prediction, and a dataset designed to investigate the effects of slight prompt variations on LLM performance.
arXiv Detail & Related papers (2025-02-09T23:01:03Z) - Meta-Prompt Optimization for LLM-Based Sequential Decision Making [24.050701239196876]
Large language models (LLMs) have been employed as agents to solve sequential decision-making tasks.
We propose our EXPonential-weight algorithm for prompt Optimization (EXPO) to automatically optimize the task description and meta-instruction in the meta-prompt.
We also extend EXPO to additionally optimize the exemplars in the meta-prompt to further enhance the performance.
arXiv Detail & Related papers (2025-02-02T09:22:39Z) - GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers [52.17222304851524]
We introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning.
By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models.
GReaTer consistently outperforms previous state-of-the-art prompt optimization methods.
arXiv Detail & Related papers (2024-12-12T20:59:43Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization [19.200989737492595]
Large language models (LLMs) have shown great progress in responding to user questions.
The quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly.
We propose a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query.
arXiv Detail & Related papers (2024-05-30T17:05:45Z) - PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling [20.0605311279483]
We introduce PRompt Optimization in Multi-Step Tasks (PROMST)
It incorporates human-designed feedback rules to automatically offer direct suggestions for improvement.
It significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks.
arXiv Detail & Related papers (2024-02-13T16:38:01Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.