Scalarization for Multi-Task and Multi-Domain Learning at Scale
- URL: http://arxiv.org/abs/2310.08910v1
- Date: Fri, 13 Oct 2023 07:31:04 GMT
- Title: Scalarization for Multi-Task and Multi-Domain Learning at Scale
- Authors: Amelie Royer, Tijmen Blankevoort, Babak Ehteshami Bejnordi
- Abstract summary: Training a single model on multiple input domains and/or output tasks allows for compressing information from multiple sources into a unified backbone.
However, optimizing such networks is a challenge due to discrepancies between the different tasks or domains.
- Score: 15.545810422759295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training a single model on multiple input domains and/or output tasks allows
for compressing information from multiple sources into a unified backbone hence
improves model efficiency. It also enables potential positive knowledge
transfer across tasks/domains, leading to improved accuracy and data-efficient
training. However, optimizing such networks is a challenge, in particular due
to discrepancies between the different tasks or domains: Despite several
hypotheses and solutions proposed over the years, recent work has shown that
uniform scalarization training, i.e., simply minimizing the average of the task
losses, yields on-par performance with more costly SotA optimization methods.
This raises the issue of how well we understand the training dynamics of
multi-task and multi-domain networks. In this work, we first devise a
large-scale unified analysis of multi-domain and multi-task learning to better
understand the dynamics of scalarization across varied task/domain combinations
and model sizes. Following these insights, we then propose to leverage
population-based training to efficiently search for the optimal scalarization
weights when dealing with a large number of tasks or domains.
Related papers
- Efficient Pareto Manifold Learning with Low-Rank Structure [31.082432589391953]
Multi-task learning is inherently a multi-objective optimization problem.
We propose a novel approach that integrates a main network with several low-rank matrices.
It significantly reduces the number of parameters and facilitates the extraction of shared features.
arXiv Detail & Related papers (2024-07-30T11:09:27Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
We present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs)
Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with particular focus on Deep Multi-Task models.
arXiv Detail & Related papers (2023-08-23T16:42:27Z) - Multi-Domain Learning with Modulation Adapters [33.54630534228469]
Multi-domain learning aims to handle related tasks, such as image classification across multiple domains, simultaneously.
Modulation Adapters update the convolutional weights of the model in a multiplicative manner for each task.
Our approach yields excellent results, with accuracies that are comparable to or better than those of existing state-of-the-art approaches.
arXiv Detail & Related papers (2023-07-17T14:40:16Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
Multi-task learning (MTL) is a subfield of machine learning with important applications.
The best MTL optimization methods require individually computing the gradient of each task's loss function.
We propose Scaled Loss Approximate Weighting (SLAW), a method for multi-task optimization that matches the performance of the best existing methods while being much more efficient.
arXiv Detail & Related papers (2021-09-16T20:58:40Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.