Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution
- URL: http://arxiv.org/abs/2407.16430v1
- Date: Tue, 23 Jul 2024 12:28:59 GMT
- Title: Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution
- Authors: Kai Liu, Zhihang Fu, Sheng Jin, Chao Chen, Ze Chen, Rongxin Jiang, Fan Zhou, Yaowu Chen, Jieping Ye,
- Abstract summary: We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
- Score: 38.844580833635725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and rejecting unknown out-of-distribution (OOD) samples is critical for deployed neural networks to void unreliable predictions. In real-world scenarios, however, the efficacy of existing OOD detection methods is often impeded by the inherent imbalance of in-distribution (ID) data, which causes significant performance decline. Through statistical observations, we have identified two common challenges faced by different OOD detectors: misidentifying tail class ID samples as OOD, while erroneously predicting OOD samples as head class from ID. To explain this phenomenon, we introduce a generalized statistical framework, termed ImOOD, to formulate the OOD detection problem on imbalanced data distribution. Consequently, the theoretical analysis reveals that there exists a class-aware bias item between balanced and imbalanced OOD detection, which contributes to the performance gap. Building upon this finding, we present a unified training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs. Our theoretically grounded method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks against several state-of-the-art OOD detection approaches. Code will be made public soon.
Related papers
- A View on Out-of-Distribution Identification from a Statistical Testing Theory Perspective [0.24578723416255752]
We study the problem of efficiently detecting Out-of-Distribution (OOD) samples at test time in supervised and unsupervised learning contexts.
We re-formulate the OOD problem under the lenses of statistical testing and then discuss conditions that render the OOD problem identifiable in statistical terms.
arXiv Detail & Related papers (2024-05-05T21:06:07Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
We introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data.
We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection.
arXiv Detail & Related papers (2023-03-24T13:49:05Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
Out-of-distribution (OOD) detection methods assume that they have test ground truths, i.e., whether individual test samples are in-distribution (IND) or OOD.
In this paper, we are the first to introduce the unsupervised evaluation problem in OOD detection.
We propose three methods to compute Gscore as an unsupervised indicator of OOD detection performance.
arXiv Detail & Related papers (2023-02-16T13:34:35Z) - Robustness to Spurious Correlations Improves Semantic
Out-of-Distribution Detection [24.821151013905865]
Methods which utilize the outputs or feature representations of predictive models have emerged as promising approaches for out-of-distribution (OOD) detection of image inputs.
We provide a possible explanation for SN-OOD detection failures and propose nuisance-aware OOD detection to address them.
arXiv Detail & Related papers (2023-02-08T15:28:33Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.